

Stromnetzanalysator

CVM-E3-MINI

BETRIEBSANLEITUNG

(M170B01-06-24A)

SICHERHEITSVORKEHRUNGEN

Befolgen Sie die Hinweise dieser Anleitung, indem Sie die nachfolgenden Symbole beachten.

GEFAHR

Weist auf eine Gefahr hin, die zu Verletzungen oder Sachschäden führen kann.

Circutor

ACHTUNG

Weist auf Aspekte hin, die erhöhte Aufmerksamkeit erfordern.

Bei der Handhabung der Geräte für den Einbau, Inbetriebnahme oder Wartung muss Folgendes beachtet werden:

IG Vor der Inbetriebnahme des Gerätes muss unbedingt die Betriebsanleitung gelesen werden

Bei Nichteinhaltung oder unsachgemäßer Ausführung von Anweisungen in dieser Anleitung, vor denen dieses Symbol steht, können Personen- oder Sachschäden am Gerät und/oder an den Anlagen entstehen.

CIRCUTOR S.A.U. behält sich das Recht vor, die Eigenschaften oder die Betriebsanleitung der Produkte ohne vorherige Ankündigung ändern zu können.

HAFTUNGSBESCHRÄNKUNG

CIRCUTOR S.A.U. behält sich das Recht vor, das Gerät oder die Gerätespezifikationen dieser Betriebsanleitung jederzeit ohne vorherige Ankündigung ändern zu können.

CIRCUTOR S.A.U. stellt seinen Kunden die aktuellen Spezifikationen der Geräte und die Betriebsanleitungen auf seiner Webseite zur Verfügung.

www.circutor.com

CIRCUTOR S.A.U. empfiehlt die Verwendung der Kabel und des Originalzubehörs aus dem Lieferumfang.

Circutor

INHALTSVERZEICHNIS

SICHERHEITSVORKEHRUNGEN	3
HAFTUNGSBESCHRÄNKUNG	3
INHALTSVERZEICHNIS	4
HISTORIE DER ÜBERARBEITUNGEN	7
SYMBOLE	7
1 ÜBERPRÜFUNGEN NACH ANLIEFERUNG DES GERÄTS	8
2 PRODUKTBESCHREIBUNG	8
3 INSTALLATION DES GERÄTS	.10
3.1 EMPFEHLUNGEN VOR DEM ERSTEN GEBRAUCH	.10
3.2 INSTALLATION	11
3.3 ADAPTER FÜR DIE MONTAGE DES GERÄTS AN EINER 72 x 72 mm großen WANDPLATTE	11
3.4 CVM-E3-MINI-FLEX: ROGOWSKI-SENSOREN	. 13
3.5 ANSCHLUSSKLEMMEN DES GERÄTS	. 14
3.5.1 MODELLE CVM-E3-MINI-ITF UND CVM-E3-MINI-MC	. 14
3.5.2 MODELL CVM-E3-MINI-FLEX	. 14
3.5.3 MODELLE CVM-E3-MINI-ITF-WiEth UND CVM-E3-MINI-MC-WiEth	. 15
3.5.4 MODELLE CVM-E3-MINI-FLEX-WiEth	. 15
3.6 ANSCHLUSSPLAN	. 16
3.6.1 MESSUNG EINES DREIPHASENNETZES MIT 4-DRAHT-ANSCHLUSS: CVM-E3-MINI-ITF UND	
CVM-E3-MINI-ITF-WiEth	. 16
3.6.2 MESSUNG EINES DREIPHASENNETZES MIT 4-DRAHT-ANSCHLUSS: CVM-E3-MINI-MC UND	
CVM-E3-MINI-MC-WiEth	. 17
3.6.3 MESSUNG EINES DREIPHASENNETZES MIT 4-DRAHT-ANSCHLUSS: CVM-E3-MINI-FLEX UND	
CVM-E3-MINI-FLEX-WIETH	.18
3.6.4 MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-ITF UND	
CVM-E3-MINI-ITF-WIETH	. 19
3.6.5 MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-MC UND	
CVM-E3-MINI-MC-WIETH	20
3.6.6 MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-FLEX UND	
	. 21
3.6.7 MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS UND STRUMWANDLERN MIT	~~
ARUN-VERBINDUNG: CVM-E3-MINI-IIF UND CVM-E3-MINI-IIF-WIEth	.22
3.6.8 MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSUHLUSS UND STRUMWANDLERN MIT	~~
ARUN-VERBINDUNG: UVM-E3-MINI-MU UND UVM-E3-MINI-MU-WIECH	.23
3.6.9 MESSUNG EINES ZWEIPHASENNETZES MIT 3-URAHT-ANSUHLUSS: UVM-E3-MINI-TTF UND	21
	.24
3.6.10MESSUNG EINES ZWEIPHASENNETZES MIT 3-DKAHT-ANSCHLUSS: UVM-E3-MINI-MU UND	25
LVM-E3-MINI-MU-WIEIN	.25
3.6.11 MESSUNG EINES ZWEIPHASENNETZES MIT 3-DKAHT-ANSCHLUSS: UVM-E3-MINI-FLEX UND	20
	.20
3.6.12 MESSUNG EINES EINPHASENNETZES MIT Z-DRAHT-ANSCHLUSS: CVM-E3-MINI-TTF UND	77
	. 27
S.O. IS MESSUNG EINES EINFRASENNETZES MIT Z-DRAFT-ANSCHLUSS. CVM-ES-MINI-MC UND	20
	.20
S.O. 14 MESSONG EINES EINFRASENNETZES VON FRASE ZO FRASE MIT Z DRAFTEN. CVM-ES-MINI-FLEA	20
3.6.15 - MESSLING FINES FINDHASENNETZES VON PHASE 711 NEUTRALLETTER MIT 2 DRÄHTEN:	.29
CVM-E3-MINI-ITE LIND CVM-E3-MINI-ITE-WIEH	30
3.6.16 - MESSLING EINES EINPHASENNETZES VON PHASE 711 NEUTRALLETER MIT 2 DRÄHTEN.	50
CVM-F3-MINI-MC LIND CVM-F3-MINI-MC-WiFth	21
3 6 17 - MESSING EINES EINPHASENNETZES VON PHASE ZU NEUTRALLETER MIT 2 DRÄHTEN.	
CVM-F3-MINI-FI FX LIND CVM-F3-MINI-FI FX-WiFth	32
4 - RETRIER	.J2 22
4 1 - MESSPARAMETER	۲۲.
4 2 - FLINKTIONEN DER TASTATUR	36
4.3 DISPLAY	.37
4.4 LED-ANZEIGEN	38
4.5 DIGITALER EINGANG (Modelle CVM-E3-MINI-xxx)	38
4.6 DIGITALER AUSGANG (CVM-E3-MINI-xxx-Modelle)	.39

Circutor

5	ANZEIGE	40
	5.1 PROFIL ANALYZER	40
	5.1.1 MAXIMALWERTE	43
	5.1.2 MINIMALWERTE	43
	5.1.3 MAXIMALER BEDARF	43
	5.1.4 OBERSCHWINGUNGEN	43
	5.1.5 ERKENNUNG EINES FALSCHEN ANSCHLUSSES UND EINER FALSCHEN DREHRICHTUNG	44
	5.2 PROFIL e ³	45
	5.3 BILDSCHIRME FÜR DIE GERÄTEINFORMATIONEN	49
	5.4 STATUSBILDSCHIRM DES DIGITALEN EIN- UND AUSGANGS(CVM-E3-MINI-xxx-Modelle)	49
	5.5 BILDSCHIRME FÜR DIE ETHERNET - WI-FI - BLUETOOTH® KOMMUNIKATION (Modelle	
(CVM-E3-MINI-xxx-WiEth)	50
	5.5.1. ETHERNET-KOMMUNIKATION: DHCP-KONFIGURATION	50
	5.5.2. ETHERNET-KOMMUNIKATION: IP-ADRESSE	50
	5.5.3. ETHERNET-KOMMUNIKATION: IP-MASKE	51
	5.5.4. ETHERNET-KOMMUNIKATION: GATEWAY	52
	5.5.5. ETHERNET-KOMMUNIKATION: MAC-ADRESSE	52
	5.5.6. WI-FI-KOMMUNIKATION: IP-ADRESSE	53
	5.5.7. WI-FI-KOMMUNIKATION: MAC-ADRESSE	53
	5.5.8. WI-FI-KOMMUNIKATION: SIGNALSTARKE	53
	5.5.9. Bluetooth®-KOMMUNIKATION: NAME	54
6	KONFIGURATION	55
	6.1 PRIMARSPANNUNG	56
	6.2 SEKUNDARSPANNUNG	57
	6.3 PRIMARSTROM	57
	6.4 SEKUNDARSTROM	58
	6.5 FLEXIBLER SENSOR	59
	6.6 ANZAHL DER QUADRANTEN	60
	6.7 MESSVEREINBARUNG	60
	6.8 MESSSYSTEM	61
	6.9 INTEGRATIONSZEIT DES MAXIMALEN BEDARFS	62
	6.10 LOSCHEN DES MAXIMALEN BEDARFS	62
	6.11 LOSCHEN DER MAXIMAL- UND MINIMALWERTE	63
		64
	6.13 AKTIVIERUNG DES ANZEIGENBILDSCHIRMS FÜR ÜBERSCHWINGUNGEN	64
	6.14 KUHLENSTUFFEMISSIUNSVERHALTNIS FUR DIE VERBRAUCHTE ENERGIE	65
	6.15 KUHLENSTUFFEMISSIUNSVERHALTNIS FUR DIE ERZEUGTE ENERGIE	66
	6.16 KUSTENVERHALTNIS FUR DIE VERBRAUCHTE ENERGIE	
	6.1/ KUSTENVERHALTNIS FUR DIE ERZEUGTE ENERGIE	
	6.18 PRUGRAMMIERUNG DES ALARMS: DIGHALER AUSGANG I I	00
		/U/
		ا / 17
	6.18.3. VERZUGERUNG BEI DER EINSCHALTUNG	ו / רד
		۲۷
	0.10.3. VERRIEGELUNG (LAICH)	כ / כד
		75
		/ 4
		75
	6.18.3. NILOWATT FRO INFOLS	75 76
	6.10.10.101.01.001.01.01.000.0000000000	70
	6.20 - TARIFALISWAHI (CVM-E3-MINI-yyy-WiFth-Modelle)	···· / /
	6.20 TAKILAOSWATE (CVTI-ES-THINI-XXX-WEUT-HODENE)	/ / 78
	6.22 - RS-485-KOMMINIKATION (CVM-F3-MINI-yyy-Modelle)	70
	6 22 1 - MODRUS-PROTOKOLI · ÜBERTRAGUNGSGESCHWINDIGKEIT	, 5 79
	6 22 2 - MODBLIS-PROTOKOLL OBERTRAGOROSOLSOLINITOJORET I	2, 80
		00 81
	6.22.4 - MODBUS-PROTOKOLL: NATING MALE	81
	6.22.5 - MODBUS-PROTOKOLL: STOPPBITS	87
	6.22.6 BACnet-PROTOKOLL: ÜBERTRAGUNGSGESCHWINDIGKEIT	
	6.22.7 BACnet-PROTOKOLL: ID	83
	6.22.8 BACnet-PROTOKOLL: MAC-ADRESSE	84

6.23 SPERREN DER PROGRAMMIERUNG	84
6.23.1 PASSWORD	86
7 CVM-E3-MINI-XXX: RS-485-KOMMUNIKATION	87
7.1 ANSCHLÜSSE	87
7.2 MODBUS-PROTOKOLL	
7.2.1 LESEBEISPIEL: Funktion 0x04.	
7.2.2 SCHREIBBEISPIEL: Funktion 0x05	
7.3 MODBUSBEFEHLE	89
7.3.1. MESSVARIABLEN	89
7.3.2. ENERGIEVARIABLEN	92
7.3.3. SPANNUNGS- UND STROMOBERWELLEN	94
7.3.4. LÖSCHEN DER PARAMETER	98
7.3.5. LEISTUNGSSTATUS	98
7.3.6. ERKENNUNG EINER FALSCHEN DREHRICHTUNG	98
7.3.7. SERIENNUMMER DES GERÄTS	99
7.3.8. DIGITALEINGANG: IMPULSZÄHLER	99
7.3.9. KONFIGURATIONSVARIABLEN DES GERÄTS	99
7.4 BACnet-PROTOKOLL	
7.4.1 MAPA PICS	
8 CVM-E3-MINI-XXX-WIETH: KOMMUNIKATION	
8.1 NUTZUNGS- UND GESUNDHEITSUMGEBUNG	
8.2 Wi-Fi-KOMMUNIKATION	108
8.3 Bluetooth®-KOMMUNIKATION	109
8.4 MOBILE ANWENDUNG	109
8.5 KONFIGURATIONSSEITE	110
9 TECHNISCHE MERKMALE	113
10 WARTUNG UND TECHNISCHER KUNDENDIENST	117
11 GARANTIE	117
12 KONFORMITÄTSERKLÁUNG UE	118
ANHANG A KONFIGURATIONSMENÜS	

HISTORIE DER ÜBERARBEITUNGEN

······································				
Datum	Überarbeitung	Beschreibung		
12/20	M170B01-06-20D	Erste Version		
06/21	M170B01-06-21A	Änderungen in den folgenden Abschnitten: 9.		
03/22	M170B01-06-22A	Änderungen in den folgenden Abschnitten: 6.22.1 6.22.6 7.3.7 7.3.8.15 9 Anhang A		
12/22	M170B01-06-22B	Änderungen in den folgenden Abschnitten: 2 4.1 4.5 6.18.6 6.19 6.22.1 6.22.6 7.3.1 7.3.2 7.3.4 7.3.8 7.3.9.8 7.3.9.11 7.3.9.12 7.3.9.15 9 Anhang A		
07/23	M170B01-06-23A	Änderungen in den folgenden Abschnitten: 3.4 3.6.3 3.6.11 3.6.14 3.6.17.		
10/23	M170B01-06-23B	Änderungen in den folgenden Abschnitten: 8.4 8.5 9.		
01/24	M170B01-06-24A	Änderungen in den folgenden Abschnitten: 7.3 9.		

Tabelle 1: Historie der Überarbeitungen

Circutor

SYMBOLE

Tabelle 2: Symbole.				
Symbol	Beschreibung			
CE	In Übereinstimmung mit der einschlägigen europäischen Richtlinie.			
🚯 Bluetooth°	Bluetooth Drahtlose Kommunikation nach dem Bluetooth®-Protokoll.			
	Gerät gemäß der europäischen Richtlinie 2012/19/EG. Entsorgen Sie das Gerät am Ende seiner Lebensdauer nicht in einem Behälter für den Hausmüll. Sie müssen unbedingt die örtlichen Vors- chriften zum Recycling elektronischer Geräte beachten.			
	Gleichstrom			
~	Wechselstrom			

Hinweis: Die Abbildungen der Geräte dienen lediglich zur Veranschaulichung und können von dem Originalgerät abweichen.

1.- ÜBERPRÜFUNGEN NACH ANLIEFERUNG DES GERÄTS

Überprüfen Sie bitte sofort nach Anlieferung des Geräts die folgenden Punkte:

a) Überprüfen Sie, ob das Gerät den Spezifikationen Ihrer Bestellung entspricht.

b) Kontrollieren Sie das Gerät auf etwaige Transportschäden.

c) Führen Sie vor dem Anschließen des Geräts eine Sichtprüfung auf äußere Unversehrtheit des Geräts durch.

- d) Überprüfen Sie, ob das Gerät mit den folgenden Zubehörteilen geliefert wurde:
 - eine Installationsanleitung,
 - -1 Halter für die Befestigung des Geräts an der Rückseite auf der DIN-Schiene
 - 4 Anschlüsse
 - 2 Klemmendeckel.

Circutor

Wenn Sie nach der Anlieferung Transportschäden oder fehlende Zubehörteile feststellen, wenden Sie sich bitte sofort an den Spediteur und/oder den Kundendienst von **CIRCUTOR**

2.- PRODUKTBESCHREIBUNG

Bei dem **CVM-E3-MINI** handelt es sich um ein Gerät zur Messung, Berechnung und Anzeige der wichtigsten elektrischen Parameter in einphasigen Netzen, in zweiphasigen Netzen mit und ohne Neutralleiter, in symmetrischen dreiphasigen Netzen mit Messung mithilfe der ARON-Verbindung oder in unsymmetrischen Netzen. Die Messung erfolgt zum Effektivwert unter Verwendung von drei Wechselspannungseingängen und drei Stromeingängen.

Je nach Stromeingang gibt es 6 verschiedene Ausführungen des Geräts:

✓ CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth mit indirekter Strommessung mit / 5A- oder /1A-Stromwandlern.

✓ CVM-E3-MINI-MC und CVM-E3-MINI-MC-WiEth mit indirekter Strommessung mit effizienten Stromwandlern der Serien MC1 und MC3.

✓ CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth mit Strommessung mittels Rogowski-Sensoren.

Tabelle 3: Modelle.

Modelle	Impulsaus	Impulsaus Digitaler gänge Eingang	Kommunikation			
	gänge		RS-485	Ethernet	Wi-Fi	Bluetooth®
CVM-E3-MINI-ITF	✓	✓	~			
CVM-E3-MINI-ITF-WiEth				✓	✓	✓
CVM-E3-MINI-MC	✓	✓	✓			
CVM-E3-MINI-MC-WiEth				✓	✓	✓
CVM-E3-MINI-FLEX	~	~	✓			
CVM-E3-MINI-FLEX-WiEth				✓	✓	✓

Das Gerät verfügt über:

- **3 Tasten,** mit denen Sie sich durch die verschiedenen Bildschirme bewegen und die Programmierung des Geräts durchführen können.

Circutor

- 2 LED-Anzeigen: CPU und ALARM
- LCD-Display zur Anzeige der Parameter

Hinweis: Geräte mit Softwareversion **v1.xx** können nicht auf Version **v2.xx** aktualisiert werden und umgekehrt.

3.- INSTALLATION DES GERÄTS

3.1.- EMPFEHLUNGEN VOR DEM ERSTEN GEBRAUCH

Circutor

Für eine sichere Verwendung des Geräts ist es wichtig, dass die Personen, die Tätigkeiten am Gerät durchführen, die in den Vorschriften des Landes, in dem das Gerät verwendet wird, festgelegten Sicherheitsmaßnahmen befolgen, die erforderliche persönliche Schutzausrüstung verwenden und die verschiedenen Warnhinweise in dieser Betriebsanleitung beachten.

Die Installation des **CVM-E3-MINI**-Geräts darf nur von autorisiertem und qualifiziertem Personal durchgeführt werden

Vor dem Durchführen von Tätigkeiten am Gerät, Ändern der Anschlüsse oder dem Austausch des Geräts muss sowohl die eigene Stromversorgung des Geräts als auch die Stromquelle, an der die Messung durchgeführt wird, unterbrochen werden. Das Durchführen von Tätigkeiten am Gerät ist für Personen gefährlich, solange es an die Stromversorgung angeschlossen ist.

Es ist wichtig, die Kabel stets in einwandfreiem Zustand zu halten, um Unfälle oder Schäden an Personen oder Einrichtungen zu vermeiden.

Der Hersteller des Geräts haftet nicht für Schäden, die entstehen können, wenn der Benutzer oder Installateur die in diesem Handbuch angegebenen Warnungen und/oder Empfehlungen nicht beachtet, oder für Schäden, die durch die Verwendung von nicht originalen Produkten oder Zubehörteilen bzw. Produkten und Zubehörteilen anderer Marken entstehen können.

Nehmen Sie keine Messungen mit dem Gerät vor, wenn Sie eine Anomalie oder einen Fehler im Gerät feststellen.

Überprüfen Sie die Umgebung, in der Sie sich befinden, bevor Sie eine Messung starten. Führen Sie keine Messungen in gefährlichen oder explosionsgefährdeten Umgebungen durch.

Bevor Sie Wartungsarbeiten, Reparaturen oder Anpassungen an den Geräteanschlüssen durchführen, muss das Gerät von allen Stromquellen getrennt werden, d. h. sowohl von der eigenen Stromversorgung des Geräts als auch von der Stromquelle, an der das Gerät die Messung durchführt.

Wenn Sie eine Fehlfunktion des Geräts vermuten, wenden Sie sich bitte an den Kundendienst. Das Gerät wird in eine Schalttafel oder ein Gehäuse mit DIN-Schienenbefestigung (IEC 60715) eingebaut.

Der empfohlene Mindestabstand zwischen den Schienen für die Installation der **CVM-E3-MINI**-Geräte beträgt 150 mm.

Wenn das Gerät angeschlossen ist, können die Anschlussklemmen, das Öffnen der Abdeckungen oder das Entfernen von Elementen Zugang zu Teilen gewähren, die bei Berührung gefährlich sein können. Das Gerät darf erst verwendet werden, wenn die Installation vollständig abgeschlossen ist.

Circutor

Das Gerät muss an einen Stromkreis angeschlossen werden, der mit Sicherungen vom Typ gl (IEC 269) oder Typ M zwischen 0,5 und 2 A geschützt ist. Es muss mit einem magnetothermischen Schalter oder einer gleichwertigen Vorrichtung ausgestattet sein, um das Gerät von der Stromversorgung zu trennen. Der Stromversorgungs- und der Spannungsmesskreis müssen mit einem Kabel mit einem Mindestabschnitt von 1 mm² verbunden werden.

Die Sekundärstromleitung des Stromwandlers muss mit einem Mindestabschnitt von 2,5 mm² verbunden werden.

Die Isoliertemperatur der an das Gerät angeschlossenen Kabel muss mindestens 62 °C betragen.

3.3.- ADAPTER FÜR DIE MONTAGE DES GERÄTS AN EINER 72 x 72 mm großen WANDPLATTE

Hinweis: Der Adapter für die Montage des Geräts an einer 72 x 72 mm großen Wandplatte ist ein Zubehörteil, das separat erhältlich ist.

CIRCUTOR verfügt über einen speziellen Adapter für das **CVM-E3-MIN**I-Gerät, um es an 72 x 72 mm großen Wandplatten montieren zu können.

Abbildung 1: CVM-E3-MINI mit Adapter für die Montage an einer Wandplatte

Abbildung 2 zeigt das Anbringen des Adapters an einem **CVM-E3-MINI**-Gerät für die Montage an einer Wandplatte.

Vor der Installation des Adapters muss das Gerät von allen Stromquellen getrennt werden, sowohl von der eigenen Stromversorgung des Geräts als auch von der Stromquelle, an der das Gerät die Messung durchführt.

Circutor -

Abbildung 2: Installation des Adapters für die Montage des Geräts an einer Wandplatte

Tahelle 4.	Technische	Merkmale de	s Adanters	für die	Montage	des Geräte	s an einer	Wandnlatte
	rechnische	Merkinale ue	s Aughreis		monitage			wanuplatte

Technische Merkmale			
Schutzart IP40			
Gehäuse	VO selbstlöschender Kunststoff		

Abbildung 3:Querschnitt der Wandplatte.

3.4.- CVM-E3-MINI-FLEX: ROGOWSKI-SENSOREN

Die Strommessung erfolgt beim CVM-E3-MINI-FLEX-Modell über flexible Sensoren nach dem Rogowski-Spulenprinzip.

Circutor

Die Flexibilität des Sensors ermöglicht die Messung von Wechselstrom mit relativer Unabhängigkeit von der Position des Leiters.

CIRCUTOR verfügt über 2 Modell von Rogowski-Sensoren, die mit dem CVM-E3-MINI-FLEX verwendet werden können: FLEX-MAG und MFC-FLEX.

Hinweis: Weitere Informationen finden Sie in der entsprechenden Anleitung des Sensors.

Tabelle 5: Maximaler Positionsfehler.

3.5.- ANSCHLUSSKLEMMEN DES GERÄTS

Circutor -

3.5.1.- MODELLE CVM-E3-MINI-ITF UND CVM-E3-MINI-MC

Abbildung 4: Anschlussklemmen des CVM-E3-MINI-ITF / -MC / -FLEX: oben - unten

Anschlussklemmen des Geräts			
A1: ~ +, Hilfsstromversorgung	4: S2, Stromeingang L2		
A2: ~ -, Hilfsstromversorgung	5: S1, Stromeingang L3		
10: VL1, Spannungseingang L1	6: S2, Stromeingang L3		
11: VL2, Spannungseingang L2	A: A+ , RS-485		
12: VL3, Spannungseingang L3	B: B- , RS-485		
13: N, Spannungseingang Neutralleiter	S: S, GND für RS-485 und die digitalen Eingänge		
1: S1, Stromeingang L1	9: I1, Digitaler Eingang 1 / Tarifauswahl		
2: S2, Stromeingang L1	8: 01, digitaler Ausgang 1		
3: S1, Stromeingang L2 7: C0, gemeinsam für den digitalen Ausgang.			

Tabelle 7: Übersicht über die Anschlussklemmen: CVM-E3-MINI-ITF und CVM-E3-MINI-MC

3.5.2.- MODELL CVM-E3-MINI-FLEX

Tabelle 8: Übersicht über die Anschlussklemmen: CVM-E3-MINI-FLEX.

Anschlussklemmen des Geräts			
A1: ~ +, Hilfsstromversorgung	4: Nicht angeschlossen		
A2: ~ -, Hilfsstromversorgung	5: C, gemeinsam für die Stromeingänge		
10: VL1, Spannungseingang L1	6: SHLD, GND der Stromeingänge		
11: VL2, Spannungseingang L2	A: A+, RS-485		
12: VL3, Spannungseingang L3	B: B- , RS-485		
13: N, Spannungseingang Neutralleiter	S: S, GND für RS-485 und die digitalen Eingänge		
1: L1, Stromeingang L1	9: 11, Digitaler Eingang 1 / Tarifauswahl		
2: L2, Stromeingang L2	8: 01, digitaler Ausgang 1		
3: L3 , Stromeingang L3	7: CO, gemeinsam für den digitalen Ausgang		

3.5.3.- MODELLE CVM-E3-MINI-ITF-WiEth UND CVM-E3-MINI-MC-WiEth

Abbildung 5: Anschlussklemmen des CVM-E3-MINI-ITF/-MC/-FLEX-WiEth: oben - unten

	••			
	I the second shift where a	die Angehlungeluis er er en	CVALED MINI ITE MUCH	LE LE J CVAA ED NAINI NAC MUCH
lanelle 9.	Unersignr liner	die Anschlusskiemmen.		「N UNA UVM-E3-MUNI-MU-WIFFA
1000110 51	0001010110 0001	010 / 1100111000011101111110111		

Anschlussklemmen des Geräts			
A1: ~ +, Hilfsstromversorgung	2: S2, Stromeingang L1		
A2: ~ -, Hilfsstromversorgung	3: S1, Stromeingang L2		
10: VL1, Spannungseingang L1	4: S2, Stromeingang L2		
11: VL2, Spannungseingang L2	5: S1, Stromeingang L3		
12: VL3, Spannungseingang L3	6: S2, Stromeingang L3		
13: N, Spannungseingang Neutralleiter	Ethernet: Ethernet-Verbindung		
1: S1, Stromeingang L1			

3.5.4.- MODELLE CVM-E3-MINI-FLEX-WiEth

Taballa 10	۱·	Übersicht über d	dia	Anschlussklamman.	CVI	M-F3		FY_\	NiEłh
labelle it	J.	Obersicht über t	JIG	Allschlusskienninen.	CVI	ILE2	-1411101-11	-EV-1	

Anschlussklemmen des Geräts				
A1: ~ +, Hilfsstromversorgung	2: L2, Stromeingang L2			
A2: ~ -, Hilfsstromversorgung	3: L3, Stromeingang L3			
10: VL1, Spannungseingang L1	4: Nicht angeschlossen			
11: VL2, Spannungseingang L2	5: C, gemeinsam für die Stromeingänge			
12: VL3, Spannungseingang L3	6: SHLD, GND der Stromeingänge			
13: N, Spannungseingang Neutralleiter	Ethernet: Ethernet-Verbindung			
1: L1, Stromeingang L1				

Circutor

3.6.- ANSCHLUSSPLAN

Circutor

3.6.1.- MESSUNG EINES DREIPHASENNETZES MIT 4-DRAHT-ANSCHLUSS: CVM-E3-MINI-ITF UND CVM-E3-MINI-ITF-WiEth

Abbildung 6: Messung von Dreiphasenstrom mit 4-Draht-Anschluss: CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth

Um die Isolierung des Geräts und seiner Kategorie zu gewährleisten, müssen die S2-Klemmen der Stromwandler geerdet werden.

3.6.2.- MESSUNG EINES DREIPHASENNETZES MIT 4-DRAHT-ANSCHLUSS: CVM-E3-MINI-MC UND CVM-E3-MINI-MC-WiEth

Circutor

Messsystem: 4-3Ph

Hinweis: Die MC-Stromwandler nicht erden.

Der Wert des Sekundärstroms des MC-Stromwandlers ist auf 0,250 A festgelegt.

3.6.3.- MESSUNG EINES DREIPHASENNETZES MIT 4-DRAHT-ANSCHLUSS: CVM-E3-MINI-FLEX UND CVM-E3-MINI-FLEX-WIETH

Circutor

Abbildung 8: Messung von Dreiphasenstrom mit 4-Draht-Anschluss: CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth

Die **SHLD**-Klemme der Sonde muss unbedingt angeschlossen werden.

3.6.4.- MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-ITF UND CVM-E3-MINI-ITF-WIETH

Circutor

Messsystem: 3-3Ph

Abbildung 9: Messung von Dreiphasenstrom mit 3-Draht-Anschluss: CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth

Um die Isolierung des Geräts und seiner Kategorie zu gewährleisten, müssen die S2-Klemmen der Stromwandler geerdet werden. 3.6.5.- MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-MC UND CVM-E3-MINI-MC-WIETH

Messsystem: 3-3Ph

VL3 Alimentación Auxiliar 12 **Power Supply** VL2 11 耳 VL1 10 C Г \bigcirc ம \oslash 0 Gris/Rosa IDDAD S1 1 S2 2 Verde/Blanco S1 3 S2 S1 4 <u>Rojo/Azul</u> 5 П Marrón/Verde S2 VI 1 1 V Vi : L1 1 L2 2P1 L3 3P1 CARGA / LOAD ┢

Abbildung 10: Messung von Dreiphasenstrom mit 3-Draht-Anschluss: CVM-E3-MINI-MC und CVM-E3-MINI-MC-WiEth

Hinweis: Die MC-Stromwandler nicht erden.

Circutor

Der Wert des Sekundärstroms des MC-Stromwandlers ist auf 0,250 A festgelegt.

3.6.6.- MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-FLEX UND CVM-E3-MINI-FLEX-WIETH

Circutor

Messsystem: 3-3Ph

Abbildung 11: Messung von Dreiphasenstrom mit 3-Draht-Anschluss: CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth

Die **SHLD**-Klemme der Sonde muss unbedingt angeschlossen werden.

3.6.7.- MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS UND STROMWANDLERN MIT ARON-VERBINDUNG: CVM-E3-MINI-ITF UND CVM-E3-MINI-ITF-WIEth

Circutor

Messsystem: 3-A-On

Um die Isolierung des Geräts und seiner Kategorie zu gewährleisten, müssen die S2-Klemmen der Stromwandler geerdet werden.

3.6.8.- MESSUNG EINES DREIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS UND STROMWANDLERN MIT ARON-VERBINDUNG: CVM-E3-MINI-MC UND CVM-E3-MINI-MC-WIEth

Circutor

Messsystem: 3-A-On

Abbildung 13: Messung von Dreiphasenstrom mit 3-Draht-Anschluss und Stromwandlern mit ARON-Verbindung: CVM-E3-MINI-MC und CVM-E3-MINI-MC-WiEth

Hinweis: Die MC-Stromwandler nicht erden.

Der Wert des Sekundärstroms des MC-Stromwandlers ist auf 0,250 A festgelegt. 3.6.9.- MESSUNG EINES ZWEIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-ITF UND CVM-E3-MINI-ITF-WiEth

Abbildung 14: Messung von Zweiphasenstrom mit 3-Draht-Anschluss: CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth

Circutor

Um die Isolierung des Geräts und seiner Kategorie zu gewährleisten, müssen die S2-Klemmen der Stromwandler geerdet werden.

3.6.10.-MESSUNG EINES ZWEIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-MC UND CVM-E3-MINI-MC-WiEth

Circutor

Messsystem: 3-2Ph

Hinweis: Die MC-Stromwandler nicht erden.

3.6.11.- MESSUNG EINES ZWEIPHASENNETZES MIT 3-DRAHT-ANSCHLUSS: CVM-E3-MINI-FLEX UND CVM-E3-MINI-FLEX-WiEth

Circutor

Abbildung 16: Messung von Zweiphasenstrom mit 3-Draht-Anschluss: CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth

Die SHLD-Klemme der Sonde muss unbedingt angeschlossen werden.

3.6.12.- MESSUNG EINES EINPHASENNETZES MIT 2-DRAHT-ANSCHLUSS: CVM-E3-MINI-ITF UND CVM-E3-MINI-ITF-WiEth

Circutor

Abbildung 17: Messung eines Einphasennetzes von Phase zu Phase mit 2 Drähten: CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth

Um die Isolierung des Geräts und seiner Kategorie zu gewährleisten, müssen die S2-Klemmen der Stromwandler geerdet werden.

3.6.13.- MESSUNG EINES EINPHASENNETZES MIT 2-DRAHT-ANSCHLUSS: CVM-E3-MINI-MC UND CVM-E3-MINI-MC-WiEth

Hinweis: Die MC-Stromwandler nicht erden.

Circutor

3.6.14.- MESSUNG EINES EINPHASENNETZES VON PHASE ZU PHASE MIT 2 DRÄHTEN: CVM-E3-MI-NI-FLEX UND CVM-E3-MINI-FLEX-WiEth

Circutor

Abbildung 19: Messung eines Einphasennetzes von Phase zu Phase mit 2 Drähten: CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth

> Die **SHLD**-Klemme der Sonde muss unbedingt angeschlossen werden.

3.6.15.- MESSUNG EINES EINPHASENNETZES VON PHASE ZU NEUTRALLEITER MIT 2 DRÄHTEN: CVM-E3-MINI-ITF UND CVM-E3-MINI-ITF-WiEth

Abbildung 20: Messung eines Einphasennetzes von Phase zu Neutralleiter mit 2 Drähten: CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth

Circutor

Um die Isolierung des Geräts und seiner Kategorie zu gewährleisten, müssen die S2-Klemmen der Stromwandler geerdet werden.

3.6.16.- MESSUNG EINES EINPHASENNETZES VON PHASE ZU NEUTRALLEITER MIT 2 DRÄHTEN: CVM-E3-MINI-MC UND CVM-E3-MINI-MC-WiEth

Circutor

Abbildung 21: Messung eines Einphasennetzes von Phase zu Neutralleiter mit 2 Drähten: CVM-E3-MINI-MC und CVM-E3-MINI-MC-WiEth

Hinweis: Die MC-Stromwandler nicht erden.

Der Wert des Sekundärstroms des MC-Stromwandlers ist auf 0,250 A festgelegt.

3.6.17.- MESSUNG EINES EINPHASENNETZES VON PHASE ZU NEUTRALLEITER MIT 2 DRÄHTEN: CVM-E3-MINI-FLEX UND CVM-E3-MINI-FLEX-WiEth

Circutor

Die **SHLD**-Klemme der Sonde muss unbedingt angeschlossen werden.

4.- BETRIEB

Das **CVM-E3-MINI** ist ein tragbarer Netzanalysator in den vier Quadranten (Verbrauch und Erzeugung). Das Gerät kann nach drei verschiedenen Messvereinbarungen arbeiten:

- ✓ CIRCUTOR-Messvereinbarung
- ✓ IEC-Messvereinbarung
- ✓ IEEE-Messvereinbarung.

Die Konfiguration der Messvereinbarung erfolgt über das Konfigurationsmenü, siehe "6.7.- MESSVER-EINBARUNG".

✓ CIRCUTOR-Messvereinbarung:

Abbildung 23: CIRCUTOR-Messvereinbarung.

✓ **IEC**-Messvereinbarung:

4-Quadranten-Betrieb (Q1, Q2, Q3, Q4)

Werte von cos φ im Empfängerbetrieb (Q1,Q4)

Circutor

- Circutor
- ✓ IEEE-Messvereinbarung:

4-Quadranten-Betrieb (Q1, Q2, Q3, Q4)

Werte von cos φ im Empfängerbetrieb (Q1,Q4)

4.1.- MESSPARAMETER

Das Gerät zeigt die in Tabelle 11 aufgeführten elektrischen Parameter an.

Parameter	Einheiten	Phasen L1-L2-L3	Insgesamt III	Maximal- wert	Minimal- wert
Spannung zwischen Phase-Neutralleiter	Vph-N	✓		\checkmark	✓
Spannung zwischen Phase-Phase	Vph-ph	✓	\checkmark	\checkmark	\checkmark
Strom	А	✓	\checkmark	\checkmark	\checkmark
Neutralleiterstrom ⁽¹⁾	А	✓	\checkmark	\checkmark	✓
Frequenz	Hz	✓	\checkmark	\checkmark	✓
Wirkleistung	M/kW	✓	\checkmark	\checkmark	✓
Scheinleistung	M/kVA	✓	\checkmark	\checkmark	✓
Gesamtblindleistung	M/kvar	✓	\checkmark	\checkmark	✓
Gesamtblindleistungsverbrauch	M/kvar	✓	\checkmark	\checkmark	✓
Gesamtblindleistungserzeugung	M/kvar	✓	\checkmark	\checkmark	\checkmark
Induktive Gesamtblindleistung	M/kvarL	\checkmark	\checkmark	\checkmark	\checkmark
Induktiver Blindleistungsverbrauch	M/kvarL	\checkmark	\checkmark	\checkmark	\checkmark
Induktive Blindleistungserzeugung	M/kvarL	\checkmark	\checkmark	\checkmark	✓
Kapazitive Gesamtblindleistung	M/kvarC	✓	\checkmark	\checkmark	✓
Kapazitiver Blindleistungsverbrauch	M/kvarC	✓	\checkmark	\checkmark	✓
Kapazitive Blindleistungserzeugung	M/kvarC	✓	\checkmark	\checkmark	\checkmark
Leistungsfaktor	PF	\checkmark	\checkmark	\checkmark	\checkmark
Cos φ	φ	✓	\checkmark	\checkmark	✓
THD % Spannung	% THD V	✓		\checkmark	✓
THD % Strom	% THD A	\checkmark		\checkmark	\checkmark

Tabelle 1	11:	Messparameter	des	CVM-E3-MINL
labelle	•••	ricooporonicicer	005	CALL FRANK

Circutor

Parameter	Einheiten	Phasen L1-L2-L3	Insgesamt III	Maximal- wert	Minimal- wert
Oberschwingungszerlegung der Spannung (bis zur 31. Oberschwingung)	harm V	~			
Oberschwingungszerlegung des Stroms (bis zur 31. Oberschwingung)	harm V	~			
Gesamtwirkenergie (Verbrauch und Erzeugung)	M/kWh	✓(1)	\checkmark		
Induktive Gesamtblindenergie (Verbrauch und Erzeugung)	M/kvarLh	√ (1)	\checkmark		
Kapazitive Gesamtblindenergie (Verbrauch und Erzeugung)	M/kvarCh		✓		
Gesamtscheinenergie (Verbrauch und Erzeugung)	M/kVAh		✓		
Wirkenergie Tarif 1 (Verbrauch und Erzeugung)	M/kWh	✓(1)	✓		
Induktive Blindenergie Tarif 1 (Verbrauch und Erzeugung)	M/kvarLh	√ (1)	✓		
Kapazitive Blindenergie Tarif 1 (Verbrauch und Erzeugung)	M/kvarCh		✓		
Scheinenergie Tarif 1 (Verbrauch und Erzeugung)	M/kVAh		✓		
Wirkenergie Tarif 2 (Verbrauch und Erzeugung)	M/kWh	√ (1)	~		
Induktive Blindenergie Tarif 2 (Verbrauch und Erzeugung)	M/kvarLh	√ (1)	√		
Kapazitive Blindenergie Tarif 2 (Verbrauch und Erzeugung)	M/kvarCh		✓		
Scheinenergie Tarif 2 (Verbrauch und Erzeugung)	M/kVAh		✓		
Maximaler Strombedarf	А	√		\checkmark	
Maximaler Bedarf an Wirkleistung	M/kW		✓	√	
Maximaler Bedarf an Scheinleistung	M/kVA		√	\checkmark	
Maximaler Bedarf an induktiver Leistung	M/kvarL		√	\checkmark	
Maximaler Bedarf an kapazitiver Leistung	M/kvarC		√	\checkmark	
Parameter	Einheiten	Tarif:	T1-T2	Gesamt	-anzahl
Anzahl der Stunden	hours			\checkmark	
Kosten	COST	\checkmark		✓	
CO2-Emissionen	kgCO,	\checkmark		✓	

Tabelle 11 (Fortsetzung): Messparameter des CVM-E3-MINI

⁽¹⁾ Variablen, die nur durch die Kommunikation sichtbar sind, siehe **Tabelle 67.**

4.2.- FUNKTIONEN DER TASTATUR

Circutor -

Das **CVM-E3-MINI** verfügt über 3 Tasten, mit denen Sie sich durch die verschiedenen Bildschirme bewegen und die Programmierung des Geräts durchführen können.

Funktion der Tasten auf den Messbildschirmen (Tabelle 12):

Taste	Kurz drücken	Lang drücken (2 s)
<	Vorheriger Bildschirm	Anzeige des Minimalwerts
\triangleright	Nächster Bildschirm	Anzeige des Maximalwerts
	Zwischen den verschie- denen Profilen wechseln (analyzer, e3)	Wechseln zum Programmiermenü
		Anzeige des maximalen Bedarfs
$\langle \rangle$		Entriegelt den aktiven Alarm
		CVM-E3-MINI-xxx Modelle: Anzeige des Sta- tus des digitalen Ein- und Ausgangs CVM-E3-MINI-xxx-WiEth -Modelle: Anzeige der Bildschirme für die Ethernet-, Wi-Fi- und Bluetooth®-Kommu- nikation
		Anzeige der Bildschirme für die Geräteinfor- mationen

Tabelle 12: Funktion der Tasten auf den Messbildschirmen.

Funktion der Tasten auf den Bildschirmen für die Oberschwingungen (Tabelle 13):

Taste	Kurz drücken	Lang drücken (2 s)
\langle	Verlassen der Bildschirme für die Obers- chwingungen	
\bigcirc	Nächster Bildschirm	
	Wechseln zwischen den verschiedenen Arten von	Wechseln zum Programmiermenü

Tabelle 13: Funktion der Tasten auf den Bildschirmen für die Oberschwingungen

Funktion der Tasten im Programmiermenü, Abfragemodus (Tabelle 14):

Tabelle 14: Funktion de	r Tasten im	Programmiermenü,	Abfragemodus
-------------------------	-------------	------------------	--------------

Taste	Kurz drücken	Lang drücken (2 s)
<	Vorheriger Bildschirm	Verlassen des Programmiermenüs
\triangleright	Nächster Bildschirm	Verlassen des Programmiermenüs
		Aufrufen und Verlassen des Bearbeitungsmodus im Programmiermenü
Funktion der Tasten im Programmiermenü, Bearbeitungsmodus (Tabelle 15):

Taste	Drücken
<	Versetzt den Cursor zur vorherigen bearbeitbaren Ziffer (blinkend)
	Erhöht die Ziffern (0-9) oder wechselt rotierend zwischen den vers- chiedenen Optionen.
	Versetzt den Cursor zur nächsten bearbeitbaren Ziffer (blinkend)

Tabelle 15	: Funktion	der Tasten in	n Programmiermenü,	Bearbeitungsmodus
			· · · · J · · · · · · · · · · · · · · ·	J

Circutor

4.3.- DISPLAY

Das Gerät verfügt über ein LCD-Display mit Hintergrundbeleuchtung, auf dem alle in der **Tabelle 11** aufgeführten Parameter des Geräts angezeigt werden.

Das Display ist in drei Bereiche unterteilt (Abbildung 26):

Abbildung 26: Bereiche des Displays beim CVM-E3-MINI.

✓ Der Datenbereich, in dem alle Werte angezeigt werden, die das Gerät misst oder berechnet.

✓ Der Gerätestatusbereich, in dem die verschiedenen Status, Profile und Geräteinformationen angezeigt werden (Tabelle 16).

Symbol	Beschreibung	Symbol	Beschreibung
\$8	Status der Anlage: ▼ Anlage verbraucht momentan ▲ Anlage erzeugt momentan	inst	Momentaner Wert
e ³	Betriebsprofil e ³	min	Minimalwert
T12	Tarif : T1 Tarif 1, T2 Tarif 2	prog	Programmierbildschirm
dem	Wert des maximalen Bedarfs	•	Programmiermenü: Durch Passwort gesperrt. Entsperrt.
max	Maximalwert	(((•	Kommunikation aktiviert

Tabelle 16: Symbol.

4.4.- LED-ANZEIGEN

Circutor

Das CVM-E3-MINI -Gerät verfügt über 2 LEDs:

- CPU, zeigt an, dass das Gerät eingeschaltet ist, sie blinkt jede Sekunde.

- ALARM / ENERGIEIMPULSE, wenn diese LED leuchtet, wird angezeigt, dass ein aktivierter Alarm oder ein aktivierter Ausgang für Energieimpulse vorhanden ist. Bei Energieimpulsen leuchtet die LED mit der Häufigkeit dieser Impulse auf.

Abbildung 27: LED-Anzeigen des CVM-E3-MINI.

4.5.- DIGITALER EINGANG (Modelle CVM-E3-MINI-xxx)

Das **CVM-E3-MINI-xxx** verfügt über einen digitalen Eingang (Klemmen **S** und **9** in **Abbildung 4**) der als Logikeingang, Tarifwahl oder Impulszähler programmiert werden kann.

Der Betrieb des Eingangs als Impulszähler ist unabhängig von der Programmierung des Digitaleingangs, d. h. das Gerät kann als Logikeingang oder Tarifwahl gleichzeitig als Impulszähler verwendet werden.

Die Konfiguration des Digitaleingangs als Impulszähler kann nur über Kommunikation erfolgen, siehe *"7.3.9.12.Digitaler Eingang (Modelle CVM-E3-MINI-xxx)*".

Bei einer Konfiguration dieses Eingangs als Logikeingang zeigt das Gerät den Status dieses Eingangs an. siehe "6.19.- FUNKTIONSWEISE DES DIGITALEN EINGANGS (CVM-E3-MINI-XXX-MODELLE)".

Durch gleichzeitiges Drücken der Tasten (S) (E) ist es möglich, auf den Statusbildschirm des digitalen Eingangs zuzugreifen, siehe "5.4.- STATUSBILDSCHIRM DES DIGITALEN EIN- UND AUSGANGS (CVM-E3-MINI-xxx-Modelle) ".

Abhängig vom Status der Eingänge können Sie den ausgewählten Tarif gemäß Tabelle 17 bestimmen.

Tabelle 17: Tarifauswahl je nach Eingang.

Circutor

l1,Ein	Tasif	
Logikeingang	Tarifauswahl	Iani
x		T1
	0	T1
	1	T2

Hinweis: Bei den CVM-E3-MINI-xxx-WiEth -Modellen erfolgt die Tarifauswahl über das Konfigurationsmenü.

4.6.- DIGITALER AUSGANG (CVM-E3-MINI-xxx-Modelle)

Das Gerät verfügt über 1 digitalen Ausgang und einen optisch isolierten NPN-Transistor (Klemmen 8 und 7 in Abbildung 4) die beide vollständig programmierbar sind, siehe "6.18.- PROGRAMMIERUNG DES ALARMS: DIGITALER AUSGANG T1".

Durch gleichzeitiges Drücken der Tasten \bigcirc \bigcirc ist es möglich, auf den Statusbildschirm des digitalen Ausgangs zuzugreifen, siehe "5.4.- STATUSBILDSCHIRM DES DIGITALEN EIN- UND AUSGANGS (CVM-E3-MINI-xxx-Modelle) ".

5.- ANZEIGE

Circutor —

Das **CVM-E3-MINI** verfügt über 2 Betriebsprofile mit Anzeigenbildschirmen je nach ausgewähltem Profil:

- ✓ Profil Analysator, **analyzer**,
- ✓ Profil der elektrischen Energieeffizienz, e3

Das Gerät zeigt standardmäßig das Profil der elektrischen Energieeffizienz **e3** an. Drücken Sie die Taste —, um von einem Betriebsprofil zum anderen wechseln.

5.1.- PROFIL ANALYZER

Im Profil analyzer des Geräts werden 15 verschiedene Bildschirme (**Tabelle 18**) sowie die Spannungs- und Stromoberwellen bis zur 31. Oberschwingung jeder der Leitungen L1, L2 und L3 (*"5.1.4.- OBERSCHWINGUNGEN"*) angezeigt.

Zum Bewegen durch die verschiedenen Bildschirme müssen Sie die Tasten \le und \ge .

Das Symbol **inst** auf der linken Seite des Bildschirms zeigt an, dass die angezeigten Werte momentane Werte sind.

Bildschirm	Parameter (Einheiten)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spannung zwischen Phase und Neutralleiter L1 (V ^{ph-N}) Spannung zwischen Phase und Neutralleiter L2 (V ^{ph-N}) Spannung zwischen Phase und Neutralleiter L3 (V ^{ph-N})
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spannung zwischen Phase und Phase L1-L2 (V ^{ph-ph}) Spannung zwischen Phase und Phase L2-L3 (V ^{ph-ph}) Spannung zwischen Phase und Phase L3-L1 (V ^{ph-ph})
• ⁸ 235.5 ^Ⅲ inst 408.0 v • 50.0 1 ^{Hz}	Durchschnittliche Spannung zwischen Phase und Neutra- lleiter Durchschnittliche Spannung zwischen Phase und Neutra- lleiter Frequenz (Hz)

Tabelle 18: Bildschirme des Profils analyzer.

Circutor

Auf diesen Bildschirmen wird auch Folgendes angezeigt:

- ✓Maximalwerte
- ✓Minimalwerte
- ✓Maximaler Bedarf
- ✓Oberschwingungen

5.1.1.- MAXIMALWERTE

Zur Anzeige der Maximalwerte auf dem Bildschirm, auf dem sie angezeigt werden, drücken Sie die Taste > 2 Sekunden lang. Diese werden 10 Sekunden lang angezeigt.

Circutor

Die restlichen Maximalwerte können durch Drücken der Tasten 🔇 und > angezeigt werden.

Auf dem Display erscheint das Symbol max.

Die Maximal- und Minimalwerte werden über das Programmiermenü zurückgesetzt (*"6.11.- LÖSCHEN DER MAXIMAL- UND MINIMALWERTE"*).

5.1.2.- MINIMALWERTE

Zur Anzeige der Minimalwerte auf dem Bildschirm, auf dem sie angezeigt werden, drücken Sie die Taste

2 Sekunden lang. Diese werden 10 Sekunden lang angezeigt.

Die restlichen Maximalwerte können durch Drücken der Tasten 🕙 und > angezeigt werden.

Auf dem Display erscheint das Symbol **min**.

Die Maximal- und Minimalwerte werden über das Programmiermenü zurückgesetzt (*"6.11.- LÖSCHEN DER MAXIMAL- UND MINIMALWERTE"*).

5.1.3.- MAXIMALER BEDARF

Das Gerät berechnet den maximalen Bedarf von:

- ✓ dem Strom jeder der Phasen
- ✓ der dreiphasigen Wirkleistung
- ✓ der dreiphasigen Scheinleistung
- ✓ der dreiphasigen induktiven Leistung
- ✓ der dreiphasigen kapazitiven Leistung

Dieser kann angezeigt werden, wenn die Tasten ≡ und ≥ gleichzeitig auf dem Parameteranzeigenbildschirm gedrückt werden.

Auf dem Display erscheint das Symbol dem.

Zum Beenden der Anzeige der Werte des maximalen Bedarfs drücken Sie die igleon oder igree.

Die Werte des maximalen Bedarfs werden über das Programmiermenü zurückgesetzt: "6.10.- LÖSCHEN DES MAXIMALEN BEDARFS".

5.1.4.- OBERSCHWINGUNGEN

Das Gerät misst und zeigt die Spannungs- und Stromoberwellen bis zur 31. Oberschwingung jeder der Leitungen L1, L2 und L3 an.

Das Gerät hat standardmäßig die Anzeige der Oberschwingungen deaktiviert, siehe "6.13.- AKTIVIE-RUNG DES ANZEIGENBILDSCHIRMS FÜR DIE OBERSCHWINGUNGEN", um zu erfahren, wie Sie die Anzeige aktivieren. Für die korrekte Messung der Oberschwingungen ist eine minimale Signalstärke von 20 V für die Messung von Spannungsoberwellen und 200 mA für die Messung von Stromoberwellen erforderlich. Wenn die Stärke niedriger ist, berechnet das Gerät sie nicht und der Wert 0 wird angezeigt.

Die Anzeigenbildschirme für die Oberschwingungen werden durch Drücken der Taste > nach dem letzten Profilbildschirm angezeigt.

Die Oberschwingungen werden wie in **Abbildung 28** dargestellt angezeigt. Die Abbildung zeigt die 15. Spannungsoberwelle (H15).

• 8 L1 [™]	0.0	Н	%
L2 inst	05	1	Harm V
▲ L3		5	

Abbildung 28: 15. Spannungsoberwelle.

Mit der Taste 📀 wechseln Sie zum nächsten Bildschirm für die Oberschwingungen.

Mit der Taste 😑 wechseln Sie von den Spannungsoberwellen zu den Stromoberwellen und von den Stromoberwellen zum Startbildschirm der momentanen Werte.

5.1.5.- ERKENNUNG EINES FALSCHEN ANSCHLUSSES UND EINER FALSCHEN DREHRICHTUNG

✓ Falscher Anschluss oder Trennung

Das Gerät verfügt über ein System zur Erkennung eines falschen Anschlusses oder einer Trennung der Spannungsleitungen. Wenn dieser Fehler auftritt, zeigt das Gerät auf Leitungen mit einem Spannungswert von weniger als 50 % des Wertes der Leitung mit einem höheren Spannungswert **0** an.

✓ Falsche Drehrichtung

Circutor

Das Gerät verfügt über ein System zur Erkennung der falschen Drehrichtung der Spannungen. Das heißt, jede der Spannungen muss korrekt an die entsprechende Klemme angeschlossen werden, L1 an Klemme 10, L2 an Klemme 11 und L3 an Klemme 12.

Bei einem Fehler in der Drehrichtung blinken die Symbole L1, L2 und L3 auf dem Display.

Das Gerät verfügt über einen RS-485 Kommunikationsparameter, der anzeigt, wenn eine falsche Drehrichtung erkannt wurde (*"7.3.6. ERKENNUNG EINER FALSCHEN DREHRICHTUNG"*).

Hinweis: Die Erkennung der Drehrichtung ist nur für folgende Messsysteme aktiviert: Messung eines Dreiphasennetzes (4-3Ph, 3-3Ph und 3-ArOn) und Messung eines Zweiphasennetzes mit 3-Draht-Anschluss (3-2Ph).

5.2.- PROFIL e³

Im Profil e³ des Geräts wird die von der Anlage verbrauchte und erzeugte Energie sowie auch der Status der Anlage angezeigt:

Circutor

◆ ∂ Anlage verbraucht momentan
 ▲ ∂ Anlage erzeugt momentan

Durch ein langes Drücken (3 Sek.) der Tasten > oder < wechseln Sie von der Anzeige der erzeugten Werte zur Anzeige der verbrauchten Werte.

Die erzeugten Werte sind durch das Minuszeichen gekennzeichnet, das vor jedem Parameter erscheint. Hinweis: Wenn die 2-Quadranten-Option konfiguriert wurde, können nur die verbrauchten Werte angezeigt werden.

Dieses Profil wird durch das **e**³ auf der linken Seite des Bildschirms gekennzeichnet.

Zum Bewegen durch die verschiedenen Bildschirme müssen Sie die Tasten 🕙 und 🌶 kurz drücken.

	Bildschirm	Parameter (Einheiten)
▼ 8 e ³	00000 к₩h [™] 05878	Dreiphasige Gesamtwirkenergie ⁽²⁾⁽³⁾ (kWh)
●	070	
▼ 0 e ³	00000 =	
		Dreiphasige Gesamtscheinenergie ⁽²⁾⁽³⁾ (kVAh)
Ĵ	570	
▼ 8 e ³	00000 =	
	0079 <u>3</u> .	Dreiphasige induktive Gesamtblindenergie ⁽²⁾⁽³⁾ (kvar ^L h)
€	U∏ I I∐ I kvar⊔	
▼ 8 e ³	00000 =	
	00406.	Dreiphasige kapazitive Gesamtblindenergie ⁽²⁾⁽³⁾ (kvar _c h)
• î	938 kvar.	

Tabelle 19: Bildschirme des Profils e³.

Circutor

Tahelle 19	(Fortsetzung)	• Rildschirme	des	Profils e3

Bildschirm	Parameter (Einheiten)
e ³ ⁸ 00058. € 7864 ^{cost}	Gesamtkosten ⁽²⁾ (cost)
e ³ ⁸ 00117 ₅ 5728	CO2-Gesamtemissionen ⁽²⁾ (kgCO ₂)
e ³ Hours Hours	Gesamtanzahl der Stunden ⁽²⁾ (hours)
• ⁸ 00000 [™] • ³ [™] 050 10 • 546	Dreiphasige Wirkenergie Tarif 1 ⁽³⁾ (kWh)
• ⁸ 00000 ^Ⅲ 07530, kvah • 510	Dreiphasige Scheinenergie Tarif 1 ⁽³⁾ (kVAh)
• 8 e ³ T1 00000 Ⅲ 00733. • 10 1 kvar [⊥] h	Dreiphasige induktive Blindenergie Tarif 1 ⁽³⁾ (kvar [∟] h)

Tabelle 19 (Fortsetzung): Bildschirme des Profils e3

⁽²⁾ Gesamtanzahl = Tarif 1 + Tarif 2.

⁽³⁾ Der Maximalwert für die Anzeige von Energie über das Display beträgt 999999999999,999 k.

Die Symbole **T1** und **T2** auf dem Display geben die beiden für das Gerät verfügbaren Tarife an. Wenn der angezeigte Tarif der aktuelle Tarif ist, blinkt das Symbol.

Wenn der Gesamttarif angezeigt wird (= Tarif 1 + Tarif 2) sind die Symbole **T1** und **T2** deaktiviert.

5.3.- BILDSCHIRME FÜR DIE GERÄTEINFORMATIONEN

Durch gleichzeitiges Drücken der Tasten Szeigt das Gerät auf jedem beliebigen Anzeigenbildschirm die Bildschirme für die Geräteinformationen mit der Geräteversion und der Seriennummer an (Abbildung 29).

Circutor

Abbildung 29: Bildschirme für die Geräteinformationen.

5.4.- STATUSBILDSCHIRM DES DIGITALEN EIN- UND AUSGANGS (CVM-E3-MINI-xxx-Modelle)

Durch gleichzeitiges Drücken der Tasten 🛇 🔳 zeigt das Gerät auf jedem beliebigen Anzeigenbildschirm den Status des digitalen Ein- und Ausgangs an (Abbildung 30)

Abbildung 30: Statusbildschirm des digitalen Ein- und Ausgangs.

Der Parameter OUE gibt den Status des digitalen Ausgangs an **0**: Ausgang nicht aktiviert **1**: Ausgang aktiviert

Das Parameter In gibt den Status des digitalen Eingangs an.

Wenn er als Logikeingang konfiguriert wurde: **0**: Eingang nicht aktiviert **1**: Eingang aktiviert

Wenn er als Tarifauswahl konfiguriert wurde: **T1**: Tarif 1 ausgewählt **T2**: Tarif 2 ausgewählt

5.5.- BILDSCHIRME FÜR DIE ETHERNET - Wi-Fi - Bluetooth[®] KOMMUNIKATION (Modelle CVM-E3-MINI-xxx-WiEth)

Hinweis: Im "ANHANG A.- KONFIGURATIONSMENÜS" kann der vollständige Konfigurationsbaum angezeigt werden.

Durch gleichzeitiges Drücken der Tasten 🔇 🔳 zeigt das Gerät von jedem Bildschirm aus die Konfigurations- und Anzeigenbildschirme für die Ethernet-, Wi-Fi- und Bluetooth®-Kommunikation an.

5.5.1. ETHERNET-KOMMUNIKATION: DHCP-KONFIGURATION

Auf diesem Bildschirm können Sie auswählen, ob DHCP aktiviert werden soll oder nicht. Wenn die Option "DHCP aktivieren" (Standardeinstellung) ausgewählt ist, wird die IP-Adresse dynamisch über einen zentralen Server zugewiesen und es müssen keine weiteren Parameter konfiguriert werden.

Drücken Sie die Taste 🔲 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 😑 , um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Circutor

Tabelle 20: Konfigurationswerte: DHCP-KONFIGURATION.

	DHCP-KONFIGURATION		
	по	DHCP wird nicht aktiviert	
Mogliche werte	9E5	DHCP wird aktiviert	

Zum Bestätigen der Option drücken Sie die Taste ≡ 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die Taste 🕑.

5.5.2. ETHERNET-KOMMUNIKATION: IP-ADRESSE

Auf diesem Bildschirm konfigurieren (DHCP nicht aktiviert) oder zeigen Sie die IP-Adresse an.

Drücken Sie die Taste 😑 , um den Wert anzuzeigen.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Circutor

Verwenden Sie die Taste 💻 , um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇 , um den Bearbeitungscursor zu bewegen.

Zum Bestätigen der Option drücken Sie die Taste ≡ 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Drücken Sie die Taste (), um zum Startbildschirm für die IP-Adresse zurückzukehren.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die Taste 😕.

5.5.3. ETHERNET-KOMMUNIKATION: IP-MASKE

Auf diesem Bildschirm konfigurieren (DHCP nicht aktiviert) oder zeigen Sie die IP-Maske an.

Drücken Sie die Taste 💻, um den Wert anzuzeigen.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💷, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen der Option drücken Sie die Taste ≡ 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Drücken Sie die Taste (=), um zum Startbildschirm für die IP-Maske zurückzukehren.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die Taste 😕.

5.5.4. ETHERNET-KOMMUNIKATION: GATEWAY

Circutor

Auf diesem Bildschirm konfigurieren (*DHCP nicht aktiviert*) oder zeigen Sie das Gateway der Ethernet-Kommunikation an.

Drücken Sie die Taste 💻, um den Wert anzuzeigen.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 😑, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🕙 , um den Bearbeitungscursor zu bewegen.

Zum Bestätigen der Option drücken Sie die Taste ≡ 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Drücken Sie die Taste (), um zum Startbildschirm für das Gateway zurückzukehren.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die Taste ightarrow.

5.5.5. ETHERNET-KOMMUNIKATION: MAC-ADRESSE

Auf diesem Bildschirm wird die MAC-Adresse des Geräts angezeigt.

Drücken Sie die Taste 💻, um den Wert anzuzeigen.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die Taste 😕.

5.5.6. WI-FI-KOMMUNIKATION: IP-ADRESSE

Auf diesem Bildschirm wird die IP-Adresse für die Wi-Fi-Kommunikation angezeigt.

Drücken Sie die Taste 💻, um den Wert anzuzeigen.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die ho.

Hinweis: Die Wi-Fi-Kommunikation funktioniert nur im DHCP-Modus.

5.5.7. WI-FI-KOMMUNIKATION: MAC-ADRESSE

Auf diesem Bildschirm wird die MAC-Adresse für die Wi-Fi-Kommunikation angezeigt.

Circutor

Drücken Sie die Taste (oxtimes), um den Wert anzuzeigen.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die ho.

5.5.8. WI-FI-KOMMUNIKATION: SIGNALSTÄRKE

Auf diesem Bildschirm wird die Stärke des Wi-Fi-Signals angezeigt.

Drücken Sie die Taste (), um den Wert anzuzeigen.

Um zum nächsten Kommunikationsbildschirm zu gelangen, drücken Sie die 🕗.

Hinweis: Wenn die Wi-Fi-Kommunikation deaktiviert ist, wird der Text DFF auf dem Display angezeigt. *Hinweis:* Wenn die Signalstärke < 25 % beträgt, wird empfohlen, die Ethernet-Kommunikation zu verwenden, um Probleme bei der Datenaufzeichnung zu vermeiden.

5.5.9. Bluetooth®-KOMMUNIKATION: NAME

Circutor

Auf diesem Bildschirm wird der Name des Geräts in der Bluetooth®-Kommunikation angezeigt.

Drücken Sie die Taste 🔳, um den Wert anzuzeigen.

Drücken Sie die Tasten 🔇 🔳 gleichzeitig, um die Bildschirme für die Ethernet-, WLi-Fi- und Bluetooth®-Kommunikation zu verlassen.

6.- KONFIGURATION

Zum Aufrufen des Konfigurationsmenüs drücken Sie die Taste 💷 3 Sekunden lang.

Wenn dieses Symbol •, auf dem Konfigurationsbildschirm angezeigt wird, können Sie die Konfigurationsparameter problemlos bearbeiten.

Circutor

Wenn dieses Symbol , angezeigt wird, hat das Gerät die Konfiguration durch ein Passwort gesperrt (*"6.23.- SPERREN DER PROGRAMMIERUNG"*) und in dem Moment, in dem Sie versuchen, den Wert mit der

die Taste (), zu bearbeiten, erscheint der in **Abbildung 31** dargestellte Bildschirm, um das Passwort einzugeben, mit dem der Bildschirm entsperrt wird.

Abbildung 31: Bildschirm für das Password

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die 🕗 und < , um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Passworts drücken Sie die Taste >, wenn Sie sich in der letzten Ziffer befinden oder die Taste <, wenn Sie sich in der ersten Ziffer befinden.

Passwort: 1234

Wenn das eingegebene Passwort korrekt ist, können die Konfigurationsparameter geändert werden.

Hinweis: Im "ANHANG A.- KONFIGURATIONSMENÜS" kann der vollständige Konfigurationsbaum angezeigt werden.

6.1.- PRIMÄRSPANNUNG

Circutor

Auf diesem Bildschirm wird die Primärspannung des Spannungswandlers programmiert.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Tabelle	21:	Konfigurationswerte:	prim	närspannu	ing
---------	-----	----------------------	------	-----------	-----

	Primärspannung
Mindestwert	1 V
Maximalwert	99999 V

Spannungsverhältnis \leq 1000. Spannungsverhältnis x Stromverhältnis \leq 300000.

Hinweis: Das Spannungsverhältnis ist das Verhältnis zwischen der Primär- und der Sekundärspannung. Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste .

6.2.- SEKUNDÄRSPANNUNG

Auf diesem Bildschirm wird die Sekundärspannung des Spannungswandlers programmiert.

SEE SEcU

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🕙 , um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Tabelle 22: Konfigu	ırationswerte: sekundärspannung.

	Sekundärspannung			
Mindestwert	1 V			
Maximalwert	999 V			

Spannungsverhältnis ≤ 1000. Spannungsverhältnis x Stromverhältnis ≤ 300000.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.3.- PRIMÄRSTROM

Hinweis: Dieser Bildschirm ist sichtbar bei den Modellen CVM-E3-MINI-ITF, CVM-E3-MINI-ITF-WiEth, CVM-E3- MINI-MC und CVM-E3-MINI-MC-WiEth.

Auf diesem Bildschirm wird der Primärstrom des Stromwandlers programmiert.

Circutor

Drücken Sie die Taste 🔲 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und

(<), um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Circutor

Tabelle 23: Konfigurationswerte: primärstrom.

	Primärstrom			
Mindestwert	1 A			
Maximalwert	10000 A			

Spannungsverhältnis x Stromverhältnis ≤ 300000.

inweis: Das Spannungsverhältnis ist das Verhältnis zwischen der Primär- und der Sekundärspannung. Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste \bigcirc .

6.4.- SEKUNDÄRSTROM

Hinweis: Dieser Bildschirm ist sichtbar bei den Modellen CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth.

Auf diesem Bildschirm wird der Sekundärstrom des Stromwandlers ausgewählt.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Circutor

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 24: Konfigurationswerte: sekundärstrom.

	Sekundärstrom				
Mögliche Werte	1 A	5 A			

Spannungsverhältnis x Stromverhältnis \leq 300000.

Zum Bestätigen des Wertes drücken Sie die Taste (\blacksquare) 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.5.- FLEXIBLER SENSOR

Hinweis: Dieser Bildschirm ist sichtbar bei den Modellen CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth.

Auf diesem Bildschirm wird der flexible Rogowski-Sensor ausgewählt, der für die Strommessung verwendet werden soll.

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 😑, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 25: Konfigurationswerte: flexibler sensor.

	Flexibler sensor			
Mäsliska Maska	ЕУРЕ I	100uV/A-Rogowski-Sensor.		
Mogliche Werte	FAbes	76uV/A-Rogowski-Sensor.		

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.6.- ANZAHL DER QUADRANTEN

Circutor

Auf diesem Bildschirm wird die Anzahl der Quadranten ausgewählt, in denen das Gerät die Messung durchführen soll.

Verwenden Sie die Taste 🔳 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 26: Konfigurationswerte: Anzahl der quadranten.

	Anzahl der quadranten					
Mögliche Werte	2	4				

Zum Bestätigen des Wertes drücken Sie die Taste 🔳 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.7.- MESSVEREINBARUNG

Auf diesem Bildschirm wird die Messvereinbarung ausgewählt, mit der das Gerät die Messung durchführen soll.

	9086
	rulES
prog	Erre

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 🚍, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 27: Konfigurationswerte: Messvereinbarung.

Circutor

	Messvereinbarung				
	[CIRCUTOR-Messvereinbarung			
Mögliche Werte	I EE	IEC-Messvereinbarung			
	I EEE	IEEE-Messvereinbarung			

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.8.- MESSSYSTEM

Auf diesem Bildschirm wird das Messsystem ausgewählt.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 28: Konfigurationswerte: Messsystem.

		Messsystem			
	4- 3Ph	Messung eines Dreiphasennetzes mit 4-Draht-Anschluss.			
	3- 3Ph	Messung eines Dreiphasennetzes mit 3-Draht-Anschluss.			
Högliche Werte 3- 2Ph		Messung eines Dreiphasennetzes mit 3-Draht-Anschluss und Transformatoren in ARON-Verbindung. ⁽⁴⁾			
		Messung eines Zweiphasennetzes mit 3-Draht-Anschluss.			
	2-2Ph	Messung eines Einphasennetzes von Phase zu Phase mit 2 Drähten.			
	2- IPh	Messung eines Einphasennetzes von Phase zu Neutralleiter mit 2 Drähten.			

⁽⁴⁾ Diese Option ist nicht verfügbar bei den Modellen CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth.

Zum Bestätigen des Wertes drücken Sie die Taste ^l	3 Sekunden	lang	und	das	Symbol	prog	hört
auf zu blinken.							

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.9.- INTEGRATIONSZEIT DES MAXIMALEN BEDARFS

Auf diesem Bildschirm wird die Integrationszeit des maximalen Bedarfs in Minuten programmiert.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 😑, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Circutor

Tabelle 29:Konfigurationswerte: Integrationszeit des maximalen Bedarfs.

	Integrationszeit des maximalen Bedarfs
Mindestwert	0 protokoll
Maximalwert	60 protokoll

Hinweis: Durch die Programmierung des Wertes **0** wird die Berechnung des maximalen Bedarfs deaktiviert.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.10.- LÖSCHEN DES MAXIMALEN BEDARFS

Auf diesem Bildschirm können Sie auswählen, ob der maximale Bedarf gelöscht werden soll oder nicht.

Drücken Sie die Taste 🔲 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Tirritor

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 30:Konfigurationswerte: Löschen des maximalen bedarfs.

	Löschen des maximalen bedarfs				
Mögliche Werte	Yes	No			

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn Sie die Option **Yes** auswählen, löscht das Gerät automatisch die Daten für den maximalen Bedarf und die Option **No** wird wieder auf dem Bildschirm angezeigt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.11.- LÖSCHEN DER MAXIMAL- UND MINIMALWERTE

Auf diesem Bildschirm können Sie auswählen, ob die Maximal- und Minimalwerte gelöscht werden sollen oder nicht.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 31:Konfigurationswerte: Löschen der maximal- und minimalwerte.

	Löschen der maximal- und minimalwerte					
Mögliche Werte	Yes	No				

Zum Bestätigen des Wertes drücken Sie die Taste 🔳 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn Sie die Option **Yes** auswählen, löscht das Gerät automatisch die Maximal- und Minimalwerte und die Option **No** wird wieder auf dem Bildschirm angezeigt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.12.- LÖSCHEN DER ENERGIEWERTE

Auf diesem Bildschirm können Sie auswählen, ob die Energiewerte, die Kosten, die CO₂-Emissionen und die Anzahl der Stunden gelöscht werden sollen oder nicht.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Circutor

Tabelle 32:Konfigurationswerte: Löschen der energiewerte.

	Löschen der energiewerte					
Mögliche Werte	Yes	No				

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn Sie die Option **Yes** auswählen, löscht das Gerät automatisch die Werte und die Option No wird wieder auf dem Bildschirm angezeigt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.13.- AKTIVIERUNG DES ANZEIGENBILDSCHIRMS FÜR OBERSCHWINGUNGEN

Auf diesem Bildschirm können Sie auswählen, ob die Oberschwingungen angezeigt werden sollen oder nicht.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 🔳 um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 33: Konfigurationswerte: Harmonische Visualisierung.

Circutor

	Harmonische Visualisierung				
Mögliche Werte	Yes No				

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.14.- KOHLENSTOFFEMISSIONSVERHÄLTNIS FÜR DIE VERBRAUCHTE ENERGIE

Das Kohlenstoffemissionsverhältnis ist die Menge der Emissionen, die in die Atmosphäre abgegeben werden, um eine Einheit Strom (1 kWh) zu erzeugen.

Das Verhältnis der europäischen Mischung beträgt ca. 0,65 kgCO₂ pro kWh.

Auf diesem Bildschirm wird das Kohlenstoffemissionsverhältnis für die verbrauchte Energie aus den beiden für das Gerät verfügbaren Tarifen programmiert: T1 in der oberen Zeile und T2 in der unteren Zeile.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Tabelle 34: Konfigurationswerte: CO₂-Emissionsverhältnis (verbrauchte energie).

	CO ₂ -Emissionsverhältnis (verbrauchte energie)
Mindestwert	0
Maximalwert	1.9999

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.15.- KOHLENSTOFFEMISSIONSVERHÄLTNIS FÜR DIE ERZEUGTE ENERGIE

Das Kohlenstoffemissionsverhältnis ist die Menge der Emissionen, die in die Atmosphäre abgegeben werden, um eine Einheit Strom (1 kWh) zu erzeugen.

Das Verhältnis der europäischen Mischung beträgt ca. 0,65 kgCO₂ pro kWh.

Auf diesem Bildschirm wird das Kohlenstoffemissionsverhältnis für die erzeugte Energie aus den beiden für das Gerät verfügbaren Tarifen programmiert: T1 in der oberen Zeile und T2 in der unteren Zeile.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 🔳 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

\checkmark Konfigurationswerte

Circutor

Tabelle 35: Konfigurationswerte: CO₂-Emissionsverhältnis (Erzeugte energie).

	CO ₂ -Emissionsverhältnis (Erzeugte energie)				
Mindestwert	0				
Maximalwert	1.9999				

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.16.- KOSTENVERHÄLTNIS FÜR DIE VERBRAUCHTE ENERGIE

Auf diesem Bildschirm werden die Kosten pro kWh Strom für die verbrauchte Energie aus den beiden für das Gerät verfügbaren Tarifen programmiert: T1 in der oberen Zeile und T2 in der unteren Zeile.

Circutor

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste (=) 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Tabelle 3	6: Konfigur	ationswerte:	Kostenverhältnis	(verbrauchte	energie).
	e			(ee. g.e,

	Kostenverhältnis (verbrauchte energie)			
Mindestwert	0			
Maximalwert	1.9999			

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.17.- KOSTENVERHÄLTNIS FÜR DIE ERZEUGTE ENERGIE

Auf diesem Bildschirm werden die Kosten pro kWh Strom für die erzeugte Energie aus den beiden für das Gerät verfügbaren Tarifen programmiert: T1 in der oberen Zeile und T2 in der unteren Zeile.

Circutor

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten > und

I um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Tabelle 37: Konfigurationswerte: Kostenverhältnis(Erzeugte energie).

	Kostenverhältnis (Erzeugte energie)			
Mindestwert	0			
Maximalwert	1.9999			

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.- PROGRAMMIERUNG DES ALARMS: DIGITALER AUSGANG T1

In diesem Schritt werden alle Werte für den digitalen Ausgang T1 programmiert.

	Out
	EodE
prog	000

Auf diesem Bildschirm wird der Code der Variable basierend auf den Tabellen **Tabelle 38, Tabelle 21** und **Tabelle 40,** ausgewählt, die den digitalen Ausgang T1 steuert.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn Sie keine Variable programmieren möchten, programmieren Sie **00.**

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Wenn der eingegebene Code falsch ist, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

Circutor

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Tabelle 38: Code	der Parame	ter zur	Programmi	erung des	digitalen	Ausgangs	(Tabelle	1)
			· · · · · · · · · · · · · · · · · · ·					•••

Parameter	Phase	Code	Phase	Code	Phase	Code	Phase	Code
Spannung zwischen Phase-Neutra- lleiter	L1	01	L2	09	L3	17	-	-
Strom	L1	02	L2	10	L3	18	-	-
Wirkleistung	L1	03	L2	11	L3	19		25
Induktive Blindleistung	L1	04	L2	12	L3	20		26
Kapazitive Blindleistung	L1	05	L2	13	L3	21		27
Scheinleistung	L1	06	L2	14	L3	22		28
Leistungsfaktor	L1	07	L2	15	L3	23		29
Cosinus φ	L1	08	L2	16	L3	24		30
% THD V	L1	36	L2	37	L3	38	-	-
% THD A	L1	39	L2	40	L3	41	-	-
Spannung zwischen Phase-Phase	L1/2	32	L2/3	33	L3/1	34	-	-
Frequenz	-	31	-	-	-	-	-	-
Maximaler Strombedarf	L1	45	L2	46	L3	47	-	-
Maximaler Bedarf an Wirkleitung	-	-	-	-	-	-		42
Maximaler Bedarf an Scheinleistung	-	-	-	-	-	-		43
Maximaler Bedarf an induktiver Leistung	-	-	-	-	-	-		132
Maximaler Bedarf an kapazitiver Leistung	-	-	-	-	-	-		133

Es gibt auch einige Parameter (**Tabelle 21**), die sich gleichzeitig auf die drei Phasen beziehen (Funktion OR). Wenn eine dieser Variablen ausgewählt ist, wird der Alarm aktiviert, wenn eine der drei Phasen die programmierten Bedingungen erfüllt.

Parametertyp	Code
Spannung zwischen Phase-Neutralleiter	200
Strom	201
Wirkleistung	202
Induktive Blindleistung	203
Kapazitive Blindleistung	204
Leistungsfaktor	205
Spannung zwischen Phase-Phase	206
% THD V	207
% THD A	208
Scheinleistung	209

Tabelle 39:Code der Parameter für die Programmierung des digitalen Ausgangs (Tabelle 2)

labelle 40. Code del ratalitete fui die rrogrammerung des digitalen Ausgangs (Energiempuse)								
Parameter	Tarif	Code	Tarif	Code	Tarif	Code		
Verbrauchte Wirkenergie	T1	49	T2	70	gesamt	112		
Erzeugte Wirkenergie	T1	59	T2	80	gesamt	122		
Verbrauchte induktive Blindenergie	T1	51	T2	72	gesamt	114		
Erzeugte induktive Blindenergie	T1	61	T2	82	gesamt	124		
Verbrauchte kapazitive Blindenergie	T1	53	T2	74	gesamt	116		
Erzeugte kapazitive Blindenergie	T1	63	T2	84	gesamt	126		
Verbrauchte Scheinenergie	T1	55	T2	76	gesamt	118		
Erzeugte Scheinenergie	T1	65	T2	86	gesamt	128		

Tabelle 40: Code der Parameter für die Programmierung des digitalen Ausgangs (Energieimpulse)

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 🕑.

Wenn ein Parameter aus Tabelle 38 oder Tabelle 21 ausgewählt wurde, wird der nächste im Abschnitt "6.18.1. MAXIMALWERT" dargestellte Konfigurationsbildschirm angezeigt.

Wenn ein Parameter aus **Tabelle 40**, ausgewählt wird, wird der nächste im Abschnitt *"6.18.8. KILOWATT PRO IMPULS"* dargestellte Konfigurationsbildschirm angezeigt.

6.18.1. MAXIMALWERT

Circutor

Auf diesem Bildschirm wird der Maximalwert programmiert, d. h. der Wert, der über dem Wert liegt, bei dem der Alarm.

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Hinweis: Mit dem Gerät können Sie auch negative Werte konfigurieren. Dazu müssen Sie die erste Ziffer über die Zahl 9 hinaus erhöhen.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und < , um den Bearbeitungscursor zu bewegen.

Hinweis: Vorsicht beim Programmieren der Erzeugungsleistung (in negativen Werten angezeigt). *Beispiel:* Wenn Sie einen Alarm für die Erzeugungsleistung mit Grenzwerten zwischen 2 kW und 1 kW eingeben möchten, stellen Sie als **Maximalwert** diesen Wert ein: - 1kW und als **Minimalwert**: - 2 kW.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.2. MINIMALWERT

Auf diesem Bildschirm wird der Minimalwert programmiert, d. h. der Wert, der unterhalb des Wertes liegt, bei dem der Alarm.

Circutor

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Hinweis: Mit dem Gerät können Sie auch negative Werte konfigurieren. Dazu müssen Sie die erste Ziffer über die Zahl 9 hinaus erhöhen.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Hinweis: Vorsicht beim Programmieren der Erzeugungsleistung (in negativen Werten angezeigt). *Beispiel:* Wenn Sie einen Alarm für die Erzeugungsleistung mit Grenzwerten zwischen 2 kW und 1 kW eingeben möchten, stellen Sie als **Maximalwert** diesen Wert ein: - 1kW und als **Minimalwert**: - 2 kW.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.3. VERZÖGERUNG BEI DER EINSCHALTUNG

Auf diesem Bildschirm wird die Verzögerung in Sekunden bei der Alarmeinschaltung programmiert.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten > und

(<), um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

✓ Konfigurationswerte

Circutor

Tabelle 41: Konfigurationswerte: Verzögerung bei der einschaltung.				
	Verzögerung bei der einschaltung			
Mindestwert	0			
Maximalwert	999			

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.4. HYSTERESEWERT

Auf diesem Bildschirm wird der Hysteresewert programmiert, d. h. die Differenz zwischen dem Wert der Alarmeinschaltung und der Alarmabschaltung in %.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten > und

(<), um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

✓ Konfigurationswerte

Tabelle 42:Konfigurationswerte: Hysteresewert.

	Hysteresewert
Mindestwert	0 %
Maximalwert	99 %

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.
6.18.5. VERRIEGELUNG (LATCH)

Auf diesem Bildschirm wird die Verriegelung ausgewählt, d. h., wenn sie nach dem Auslösen des Alarms verriegelt bleibt, auch wenn der Zustand, der den Alarm verursacht hat, verschwindet.

Circutor

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

labelle 43: Konfigurationswerte: Latch.		
	Lat	:ch
Möaliche Werte	Yes	No

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

Hinweis: Wenn das Gerät zurückgesetzt wird, wird der Alarmstatus gelöscht und das Gerät kehrt in den programmierten Ruhezustand zurück, solange der Zustand, durch den er aktiviert wird, nicht länger aufrechterhalten bleibt.

6.18.6. SELBSTHALTUNGSZEIT

Hinweis: Bildschirm sichtbar, wenn die Selbsthaltung (Latch) aktiviert wurde, siehe "6.18.5.SELBSTHALTUNG (LATCH)".

Auf diesem Bildschirm wird die Selbsthaltungszeit programmiert, d. h. die Zeit in Sekunden, die der Alarm erhalten bleibt. Wird nach dieser Zeit der Alarmzustand nicht mehr aufrechterhalten, wird die Abschaltverzögerung aktiviert.

	£-0u£
	LREch
prog	000

Circutor

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 44: Konfigurationswerte: Selbsthaltungszeit.

	Selbsthaltungszeit		
Mindestwert	0 s.		
Maximalwert	600 s.		

Hinweis: Wenn eine *O* programmiert ist, bleibt der Alarm erhalten und kann nur manuell ausgeschaltet werden.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.7. VERZÖGERUNG BEI DER ABSCHALTUNG

Auf diesem Bildschirm wird die Verzögerung in Sekunden bei der Alarmabschaltung programmiert.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 😑, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🕙, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

✓ Konfigurationswerte

Tabelle 45: Konfigurationswerte: Verzögerung bei der abschaltung.

	Verzögerung bei der abschaltung
Mindestwert	0 s.
Maximalwert	999 s.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.8. STATUS DER KONTAKTE

Auf diesem Bildschirm können Sie den Status der Relaiskontakte auswählen.

Out Contc prog

Drücken Sie die Taste 💷 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol prog.

), um zwischen den möglichen Optionen zu wechseln. Verwenden Sie die Taste ⁽

✓ Konfigurationswerte

labelle 46: Konngulationswerte: status der kontakte				
		Status der kontakte		
Mögliche Werte	лŪ	Normalerweise offener Kontakt.		
	лE	Normalerweise geschlossener Kontakt.		

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol prog hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.18.9. KILOWATT PRO IMPULS

Hinweis: Dieser Bildschirm ist sichtbar, wenn der ausgewählte Alarmparameter eine Energie ist, siehe Tabelle 40.

Auf diesem Bildschirm werden Kilowatt pro Impuls programmiert.


```
Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken
Seite des Bildschirms blinkt das Symbol prog.
```

Verwenden Sie die Taste 😑, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten > und < , um den Bearbeitungscursor zu bewegen.

Circutor

✓ Konfigurationswerte

Tabelle 47: Konfigurationswerte: Kilowatt pro Impuls.

	Kilowatt pro Impuls
Mindestwert	000.01 kWh
Maximalwert	999.99 kWh

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.18.10. IMPULSBREITE

Hinweis: Dieser Bildschirm ist sichtbar, wenn der ausgewählte Alarmparameter eine Energie ist, siehe *Tabelle 40*.

Auf diesem Bildschirm wird die Impulsbreite in ms ausgewählt.

Drücken Sie die Taste 🔲 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🖄 und 🕙, um den Bearbeitungscursor zu bewegen.

✓ Konfigurationswerte

Tabelle 48: Konfigurationswerte: Impulsbreite.

	Impulsbreite
Mindestwert	30 ms.
Maximalwert	500 ms.

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.19.- FUNKTIONSWEISE DES DIGITALEN EINGANGS (CVM-E3-MINI-XXX-MODELLE)

Auf diesem Bildschirm können Sie die Funktion des digitalen Eingangs auswählen.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um zwischen den möglichen Optionen zu wechseln:

✓ Konfigurationswerte

Tabelle 49: Konfigurationswerte: Digitalen eingangs.

	Digitalen eingangs			
	L091 C	Logikeingang		
Mogliche werte	EArl F	Tarifauswahl		

Hinweis: Der Digitaleingang über die RS-485-Kommunikation als Impulszähler konfiguriert werden, siehe "7.3.9.12. Digitaleingang (Modelle CVM-E3-MINI-xxx)".

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.20.- TARIFAUSWAHL (CVM-E3-MINI-xxx-WiEth-Modelle)

Auf diesem Bildschirm können Sie den Betriebstarif auswählen.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um zwischen den möglichen Optionen zu wechseln:

Circutor

✓ Konfigurationswerte

Tabelle 50: Konfigurationswerte: tarif.

	Tarif		
Mä eliek e Maeke	ΕI	Tarif 1.	
Mogliche Werte	F5	Tarif 2.	

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.21.- BACKLIGHT, HINTERGRUNDBELEUCHTUNG DES DISPLAYS

Auf diesem Bildschirm wird die maximale Zeit der Helligkeit des Displays seit der letzten Handhabung des Geräts über die Tastatur programmiert. Nach der programmierten Zeit verringert das Display den Helligkeitsgrad.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 😑, um den Wert der blinkenden Ziffer zu ändern.

Wenr	n der	auf dem	n Bildschirm	n angezeigte	Wert der	gewünschte	ist, verwender	n Sie die	Tasten (>	und
(<),	um d	en Beart	peitungscur	sor zu bewe	gen.						

✓ Konfigurationswerte

Tabelle 51: Konfigurationswerte: Backlight.		
	Backlight	
Mindestwert	1 sekunde.	
Maximalwert	999 sekunden	

Zum Bestätigen des Wertes drücken Sie die Taste (\blacksquare) 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.22.- RS-485-KOMMUNIKATION (CVM-E3-MINI-xxx-Modelle)

Auf diesem Bildschirm können Sie das Protokoll der **RS-485**-Kommunikation auswählen.

SEE ProE nodb

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um zwischen den möglichen Optionen zu wechseln:

✓ Konfigurationswerte

Tabelle 52: Konfigurationswerte: RS-485-Kommunikation.

	RS-485-Kommunikation			
Mögliche Werte	nodb	Modbus.		
	68сл	BACnet.		

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

Hinweis: Wenn Sie das Konfigurationsmenü verlassen und die RS-485-Kommunikationsparameter geändert wurden, wird das Gerät neu gestartet.

Wenn das Modbus-Protokoll ausgewählt wurde, ist der nächste Konfigurationsbildschirm der im Abschnitt "6.22.1. MODBUSPROTOKOLL: ÜBERTRAGUNGSGESCHWINDIGKEIT" dargestellte Bildschirm.

Wenn das BACnet-Protokoll ausgewählt wurde, ist der nächste Konfigurationsbildschirm der im Abschnitt **"6.22.6.- BACnet-PROTOKOLL: ÜBERTRAGUNGSGESCHWINDIGKEIT"** dargestellte Bildschirm.

6.22.1.- MODBUS-PROTOKOLL: ÜBERTRAGUNGSGESCHWINDIGKEIT

Auf diesem Bildschirm wird die Übertragungsgeschwindigkeit für die Modbus-Kommunikation programmiert.

Circutor

Circutor

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 53: Konfigurationswerte: Modbus-protokoll: übertragungsgeschwindigkeit.

	übertragungsgeschwindigkeit						
Mögliche Werte	9600	19200	38400 (5)	57600 ⁽⁵⁾	115200 (5)		

⁽⁵⁾ Verfügbar auf Geräten mit Softwareversion v2.xx.

Zum Bestätigen des Wertes drücken Sie die Taste (\blacksquare) 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ightarrow.

6.22.2.- MODBUS-PROTOKOLL: NUMMER DES PERIPHERIEGERÄTS

Auf diesem Bildschirm wird die Nummer des Peripheriegeräts programmiert.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 🔲, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

✓ Konfigurationswerte

Tabelle 54: Konfigurationswerte: Modbus-protokoll: Nummer des peripheriegeräts.

	Nummer des peripheriegeräts				
Mindestwert	1				
Maximalwert	255				

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.22.3.- MODBUS-PROTOKOLL: PARITÄT

Auf diesem Bildschirm können Sie die Art der Parität für die Modbus-Kommunikation auswählen.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 55:Konfigurationswerte: Modbus-protokoll: Parität.

	Parität				
	nonE	ohne Parität.			
Mögliche Werte	EuEn	gerade Parität.			
	odd	ungerade Parität.			

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.22.4.- MODBUS-PROTOKOLL: DATENBITS

Auf diesem Bildschirm wird die Anzahl der Datenbits für die Modbus-Kommunikation programmiert.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

Circutor

Circutor

Tabelle 56:Konfigurationswerte: Modbus-protokoll: Datenbits.

	Datenbits				
Mögliche Werte	7	8			

Zum Bestätigen des Wertes drücken Sie die Taste 🔳 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.22.5.- MODBUS-PROTOKOLL: STOPPBITS

Auf diesem Bildschirm können Sie die Anzahl der Stoppbits für die Modbus-Kommunikation auswählen.

Drücken Sie die Taste 🗐 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 57: Konfigurationswerte: Protocolo Modbus: Stoppbits.

	Stoppbits				
Mögliche Werte	1	2			

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.22.6.- BACnet-PROTOKOLL: ÜBERTRAGUNGSGESCHWINDIGKEIT

Auf diesem Bildschirm wird die Übertragungsgeschwindigkeit für die BACnet-Kommunikation programmiert.

Drücken Sie die Taste 🚍 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Circutor

Verwenden Sie die Taste 💻, um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

Tabelle 58: Konfigurationswerte: BACnet-protokoll: übertragungsgeschwindigkeit.

	übertragungsgeschwindigkeit.						
Mögliche Werte	9600	19200	38400 ⁽⁶⁾	57600 ⁽⁶⁾	115200 ⁽⁶⁾		

⁽⁶⁾ Verfügbar auf Geräten mit Softwareversion **v2.xx.**

Zum Bestätigen des Wertes drücken Sie die Taste (\blacksquare) 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste 😕.

6.22.7.- BACnet-PROTOKOLL: ID

Auf diesem Bildschirm wird die Geräte-ID programmiert.

Drücken Sie die Taste 🔲 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste (), um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇 , um den Bearbeitungscursor zu bewegen.

✓ Konfigurationswerte

Tabelle 59:Konfigurationswerte: BACnet-protokoll: ID.

	ID			
Mindestwert	0			
Maximalwert	99999			

Zum Bestätigen des Wertes drücken Sie die Taste 🔲 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

. Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste ig>.

6.22.8.- BACnet-PROTOKOLL: MAC-ADRESSE

Circutor

Auf diesem Bildschirm wird die MAC-Adresse programmiert.

Drücken Sie die Taste 🔲 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Auf der linken Seite des Bildschirms blinkt das Symbol **prog**.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Wenn der eingegebene Wert außerhalb des Bereichs der Programmierwerte liegt, wird der programmierte Wert gelöscht und der zuletzt gespeicherte Wert wiederhergestellt.

✓ Konfigurationswerte

Tabelle 60: Konfigurationswerte: BACnet-protokoll: MAC-Adresse.

	MAC-Adresse
Mindestwert	0
Maximalwert	127

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Um auf den nächsten Programmierschritt zuzugreifen, drücken Sie die Taste >.

6.23.- SPERREN DER PROGRAMMIERUNG

Der Zweck dieses Bildschirms ist es, die im Konfigurationsmenü programmierten Daten zu schützen.

Drücken Sie die Taste 😑 3 Sekunden lang, um den Bearbeitungsmodus zu aktivieren. Es erscheint der in Abbildung 32 dargestellte Bildschirm, um das Passwort einzugeben, mit dem der Bildschirm entsperrt wird.

Circutor

Abbildung 32: Bildschirm für das Passwort

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕑 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Passworts drücken Sie die Taste >, wenn Sie sich in der letzten Ziffer befinden oder die Taste <, wenn Sie sich in der ersten Ziffer befinden.

Passwort: 1234

Wenn das eingegebene Passwort korrekt ist, kann die Programmiersperre geändert werden. Verwenden Sie die Taste (), um zwischen den möglichen Optionen zu wechseln.

✓ Konfigurationswerte

	C1. I			C				
anelle	ni	KODEIAI	irarionsw	/ י י י ו ו ו	nerren	ner	nronramm	neriinn
abene	U 1. I	Ronnige	100101134		perien	001	programmi	nerong.

		Sperren der programmierung		
	UnloC	Beim Aufrufen des Programmiermenüs können Sie die Programmieru sehen und ändern. Das Symbol of auf dem Display zeigt den permanenten Entsperrstatus		
Mögliche Werte	LoC	Beim Aufrufen des Programmiermenüs können Sie zwar die Programmierung sehen, aber nicht ändern. Das Symbol Szeigt den Sperrstatus an. Um die Programmierung ändern zu können, muss ein Passwort eingegeben werden.		

Zum Bestätigen des Wertes drücken Sie die Taste 😑 3 Sekunden lang und das Symbol **prog** hört auf zu blinken.

Drücken Sie die Taste Ò, um das Passwort zum Blockieren oder Entsperren der Programmierung einzugeben.

6.23.1.- PASSWORD

Circutor

Auf diesem Bildschirm geben Sie das Passwort zum Blockieren oder Entsperren der Programmierung ein.

Verwenden Sie die Taste 💻, um den Wert der blinkenden Ziffer zu ändern.

Wenn der auf dem Bildschirm angezeigte Wert der gewünschte ist, verwenden Sie die Tasten 🕗 und 🔇, um den Bearbeitungscursor zu bewegen.

Zum Bestätigen des Passworts drücken Sie die Taste >, wenn Sie sich in der letzten Ziffer befinden oder die Taste \le wenn Sie sich in der ersten Ziffer befinden.

Passwort: 1234

Dieser Wert kann nur durch Kommunikation geändert werden, siehe "7.3.7.16. Passwortkonfiguration."

7.- CVM-E3-MINI-xxx: RS-485-KOMMUNIKATION

Die **CVM-E3-MINI-xxx** verfügen über einen RS-485-Kommunikationsanschluss. Das Gerät verfügt standardmäßig über zwei Kommunikationsprotokolle **MODBUS RTU** ® und **BACnet**.

Circutor

Im Konfigurationsmenü wählen Sie das Protokoll und die Konfigurationsparameter aus, ("6.22.- RS-485-KOMMUNIKATION").

7.1.- ANSCHLÜSSE

Die Zusammensetzung des RS-485-Kabels muss mit einem Twisted-Pair-Kabel mit Abschirmgitter (mindestens 3 Drähte) und einem maximalen Abstand zwischen dem **CVM-E3-MINI** und der Master-Einheit mit einer Länge von 1200 Metern erfolgen.

An diesen Bus können maximal 32 CVM-E3-MINI angeschlossen werden.

Für die Kommunikation mit der Master-Einheit muss ein intelligenter RS-232-zu-RS-485-Netzwerkprotokoll-Konverter verwendet werden.

Abbildung 33: Anschlussplan RS-485.

7.2.- MODBUS-PROTOKOLL

Circutor

Innerhalb des MODBUS-Protokolls verwendet das **CVM-E3-MINI** den RTU-Modus (Remote Terminal Unit). Die im Gerät implementierten Modbus-Funktionen sind Folgende:

Funktion 0x03 und 0x04: Lesen von integren DatensätzenFunktion 0x05: Schreiben eines Relais.Funktion 0x10: Schreiben von mehreren Datensätzen.

7.2.1.- LESEBEISPIEL: Funktion 0x04.

Frage: Momentaner Wert der Phasenspannung von L1.

Adresse	Funktion	Erster Datensatz	Keine Datensätze	CRC
0A	04	0000	0002	70B0

Adresse: OA, Nummer des Peripheriegeräts: 10 in Dezimalzahl. Funktion: O4, Lesefunktion Erster Datensatz: 0000, Datensatz, bei dem mit dem Lesen begonnen werden soll. Anzahl der Datensätze: 0002, Anzahl der zu lesenden Datensätze. CRC: 70B0, CRC-Zeichen.

Antwort:

Adresse	Funktion	Keine Bytes	Datensatz Nr. 1	Datensatz Nr. 2	CRC
0A	04	04	0000	084D	86B1

Adresse: OA, Nummer des Peripheriegeräts: 10 in Dezimalzahl. Funktion: O4, Lesefunktion. Anzahl der Bytes: O4, Anzahl der empfangenen Bytes. Datensatz: 0000084D, Wert der Phasenspannung von L1: VL1 x 10 : 212.5V. CRC: 86B1, CRC-Zeichen

Hinweis: Jeder Modbus-Frame hat eine Obergrenze von 30 Variablen (60 Datensätze).

7.2.2.- SCHREIBBEISPIEL: Funktion 0x05.

Frage: Löschen der Maximal- und Minimalwerte

Adresse	Funktion	Erster Datensatz	Wert	CRC
0A	05	0834	FF00	CEEF

Adresse: OA, Nummer des Peripheriegeräts: 10 in Dezimalzahl.

Funktion: 05, Lesefunktion.

Erster Datensatz: 0834, Datensatz des Parameters für das Löschen der Maximal- und Minimalwerte.

Wert: FF00, Sie geben an, dass Sie die Maximal- und Minimalwerte löschen möchten. **CRC: CEEF**, CRC-Zeichen.

Antwort:

Adresse	Funktion	Erster Datensatz	Wert	CRC
0A	05	0834	FF00	CEEF

Circutor

7.3.- MODBUSBEFEHLE

Für die Variablen für Messung, Energie und Oberschwingungen von Spannung und Strom wurden zwei verschiedene Speicherabbilder implementiert, die jedoch auf die gleiche Weise funktionieren:

✓ Abbild 1, verwendet die Adressen des CVM-MINI-Geräts durch die Eingabe der Adressen der neuen Parameter, die dieses neue Gerät misst.

✓ Abbild 2, verwendet die Adressen des CVM-C10-Geräts (durch Hinzufügen von 0x1000 zu allen Adressen). Mit Ausnahme von 3 Parametern sind die Parameter des CVM-C10 und des CVM-E3-MINI identisch.

Wenn Sie ein Modbus-Abbild von Grund auf neu implementieren möchten, empfiehlt es sich, **Abbild 2** zu verwenden. Wenn Sie stattdessen von einem Abbild ausgehen, das bereits in einem anderen Gerät verwendet wurde, verwenden Sie **Abbild 1**, wenn es sich dabei um ein **CVM-MINI** handelt, und **Abbild 2**, wenn es sich dabei um ein **CVM-C10** handelt.

Alle Adressen des MODBUS-Abbilds werden in Hexadezimalzahlen ausgedrückt.

Hinweis: Auf Geräten mit Softwareversion $\geq v2.xx$ ist es notwendig, ein Timeout ≥ 200 ms und eine Kadenz zwischen Frames ≥ 100 ms zu verwenden.

7.3.1. MESSVARIABLEN

Für diese Variablen sind die **Funktionen 0x03** und **0x04** implementiert.

Abbild 1							
Parameter	Symbol	Momentan	Maximum	Minimum	Einheiten		
Phasenspannung L1	V 1	00-01	60-61	CO-C1	V x 10		
Strom L1	A 1	02-03	62-63	C2-C3	mA		
Wirkleistung L1	kW 1	04-05	64-65	C4-C5	W		
Blindleistung L1	kvar 1	06-07	66-67	C6-C7	var		
Induktive Leistung L1	kvarL 1	12C-12D	13E-13F	150-151	var		
Kapazitive Leistung L1	kvarC 1	12E-12F	140-141	152-153	var		
Scheinleistung L1	kVA 1	4A-4B	AA-AB	10A-10B	VA		
Leistungsfaktor L1	PF 1	08-09	68-69	C8-C9	x 100		
Cos φ L1	Cos φ 1	130-131	142-143	154-155	x 100		
Phasenspannung L2	V 2	0A-0B	6A-6B	CA-CB	V x 10		
Strom L2	A 2	OC-OD	6C-6D	CC-CD	mA		
Wirkleistung L2	kW 2	0E-0F	6E-6F	CE-CF	W		
Blindleistung L2	kvar 2	10-11	70-71	D0-D1	var		
Induktive Leistung L2	kvarL 2	132-133	144-145	156-157	var		
Kapazitive Leistung L2	kvarC 2	134-135	146-147	158-159	var		

Tabelle 62: Modbus-Speicherabbild 1 (Messvariablen).

Abbild 1								
Parameter	Symbol	Momentan	Maximum	Minimum	Einheiten			
Scheinleistung L2	kVA 2	4C-4D	AC-AD	10C-10D	VA			
Leistungsfaktor L2	PF 2	12-13	72-73	D2-D3	x 100			
Cos φ L2	Cos φ 2	136-137	148-149	15A-15B	x 100			
Phasenspannung L3	V 3	14-15	74-75	D4-D5	V x 10			
Strom L3	A 3	16-17	76-77	D6-D7	mA			
Wirkleistung L3	kW 3	18-19	78-79	D8-D9	W			
Blindleistung L3	kvar 3	1A-1B	7A-7B	DA-DB	var			
Induktive Leistung L3	kvarL 3	138-139	14A-14B	15C-15D	var			
Kapazitive Leistung L3	kvarC 3	13A-13B	14C-14D	15E-15F	var			
Scheinleistung L3	kVA 3	4E-4F	AE-AF	10E-10F	VA			
Leistungsfaktor L3	PF 3	1C-1D	7C-7D	DC-DD	x 100			
Cos φ L3	Cos q 3	13C-13D	14E-14F	160-161	x 100			
Dreiphasige Wirkleistung	kW III	1E-1F	7E-7F	DE-DF	W			
Dreiphasige induktive Leistung	kvarL III	20-21	80-81	E0-E1	var			
Dreiphasige kapazitive Leistung	kvarC III	22-23	82-83	E2-E3	var			
Dreiphasige Scheinleistung	kVA III	42-43	A2-A3	102-103	VA			
Dreiphasiger Leistungsfaktor	PF III	26-27	86-87	E6-E7	x100			
Dreiphasiger Cos $oldsymbol{\phi}$	Cos φ III	24-25	84-85	E4-E5	x100			
Frequenz L1	Hz	28-29	88-89	E8-E9	Hz x10			
Spannung L1-L2	V12	2A-2B	8A-8B	EA-EB	V x 10			
Spannung L2-L3	V23	2C-2D	8C-8D	EC-ED	V x 10			
Spannung L3-L1	V31	2E-2F	8E-8F	EE-EF	V x 10			
% THD Spannung L1	%THDV1	30-31	90-91	F0-F1	% x 10			
% THD Spannung L2	%THDV2	32-33	92-93	F2-F3	% x 10			
% THD Spannung L3	%THDV3	34-35	94-95	F4-F5	% x 10			
% THD Strom L1	%THDI1	36-37	96-97	F6-F7	% x 10			
% THD Strom L2	%THDI2	38-39	98-99	F8-F9	% x 10			
% THD Strom L3	%THDI3	3A-3B	9A-9B	FA-FB	% x 10			
Maximaler Bedarf kW III	Md(Pd)	162-163	16A-16B	-	W			
Maximaler Bedarf kVA III	Md(Pd)	164-165	16C-16D	-	VA			
Maximaler Bedarf kvarL III	Md(Pd)	166-167	16E-16F	-	var			
Maximaler Bedarf kvarC III	Md(Pd)	168-169	170-171	-	var			
Maximaler Bedarf I L1	Md(Pd)	44-45	A4-A5	-	mA			
Maximaler Bedarf I L2	Md(Pd)	52-53	B2-B3	-	mA			
Maximaler Bedarf I L3	Md(Pd)	54-55	B4-B5	-	mA			
Dreiphasenstrom (Mittelwert)	A AVG	46-47	A6-A7	106-417	mA			
Neutralleiterstrom	A	48-49	A8-A9	108-109	mA			
Temperatur	Temp	50-51	B0-B1	110-111	°C x 10			

Tabelle 62 (Fortsetzung): Modbus-Speicherabbild 1 (Messvariablen).

Circutor _____

Tabelle 63: Modbus-Speicherabbild 2 (Messvariablen).

Abbild 2							
Parameter	Symbol	Momentan	Maximum	Minimum	Einheiten		
Phasenspannung L1	V 1	1000-1001	1106-1107	1164-1165	V x 10		

Abbild 2 Parameter Symbol Momentan Maximum Minimum Einheiten Strom L1 A 1 1002-1003 1108-1109 1166-1167 mΑ W Wirkleistung L1 kW 1 1004-1005 110A-110B 1168-1169 Induktive Leistung L1 kvarL 1 1006-1007 110C-110D 116A-116B var Kapazitive Leistung L1 kvarC 1 110E-110F 116C-116D 1008-1009 var kVA 1 VA Scheinleistung L1 100A-100B 1110-1111 116E-116F PF 1 x 100 Leistungsfaktor L1 100C-100D 1112-1113 1170-1171 Cos φ L1 Cos ϕ 1 100E-100F 1114-1115 1172-1173 x 100 Phasenspannung L2 V 2 1010-1011 1116-1117 1174-1175 V x 10 Strom L2 A 2 1118-1119 mΑ 1012-1013 1176-1177 kW 2 W Wirkleistung L2 1014-1015 111A-111B 1178-1179 Induktive Leistung L2 kvarL 2 1016-1017 111C-111D 117A-117B var kvarC 2 Kapazitive Leistung L2 1018-1019 111E-111F 117C-117D var Scheinleistung L2 kVA 2 101A-101B 1120-1121 117E-117F VA Leistungsfaktor L2 PF 2 1122-1123 101C-101D 1180-1181 x 100 $\cos \phi L2$ 101E-101F 1124-1125 x 100 $\cos \phi 2$ 1182-1183 Phasenspannung L3 V3 1126-1127 1184-1185 V x 10 1020-1021 Strom L3 Α3 1022-1023 1128-1129 1186-1187 mΑ kW 3 W Wirkleistung L3 1024-1025 112A-112B 1188-1189 Induktive Leistung L3 kvarL 3 112C-112D 1026-1027 118A-118B var Kapazitive Leistung L3 kvarC 3 1028-1029 112E-112F 118C-118D var Scheinleistung L3 kVA 3 1130-1131 118E-118F VA 102A-102B Leistungsfaktor L3 PF 3 102C-102D 1132-1133 1190-1191 x 100 x 100 Cos ϕ L3 Cos ϕ 3 102E-102F 1134-1135 1192-1193 Dreiphasige Wirkleistung kW III W 1030-1031 1136-1137 1194-1195 Dreiphasige induktive Leistung kvarL III 1032-1033 1138-1139 1196-1197 var Dreiphasige kapazitive Leistung kvarC III 1034-1035 113A-113B 1198-1199 var Dreiphasige Scheinleistung kVA III 1036-1037 113C-113D 119A-119B VA PF III x100 Dreiphasiger Leistungsfaktor 1038-1039 113E-113F 119C-119D x100 Cos φ III 1140-1141 119E-119F Dreiphasiger Cos ϕ 103A-103B 1142-1143 Hz x100 Frequenz L1 Ηz 103C-103D 11A0-11A1 Spannung L1-L2 V12 103E-103F 1144-1145 11A2-11A3 V x 10 Spannung L2-L3 V23 1040-1041 1146-1147 11A4-11A5 V x 10 Spannung L3-L1 V31 1042-1043 1148-1149 11A6-11A7 V x 10 Neutralleiterstrom А 1044-1045 114A-114B 11A8-11A9 mΑ %THDV1 % x 10 % THD Spannung L1 1046-1047 114C-114D 11AA-11AB % THD Spannung L2 %THDV2 1048-1049 114E-114F 11AC-11AD % x 10 % THD Spannung L3 %THDV3 104A-104B 1150-1151 11AE-11AF % x 10 % THD Strom L1 %THDI1 104C-104D 1152-1153 11B0-11B1 % x 10 % THD Strom L2 %THDI2 % x 10 104E-104F 1154-1155 11B2-11B3 % THD Strom L3 %THDI3 1050-1051 1156-1157 11B4-11B5 % x 10 W Maximaler Bedarf kW III Md(Pd) 1052-1053 1158-1159 _ Maximaler Bedarf kVA III Md(Pd) 1054-1055 115A-115B VA _ Maximaler Bedarf kvarL III Md(Pd) 1200-1201 1204-1205 _ var

Tabelle 63 (Fortsetzung): Modbus-Speicherabbild 2 (Messvariablen)

Circutor

abelle 05 (Fortsetzang). Modbas Speicherabbild z (Messvanablen)								
Abbild 2								
Parameter	Symbol	Momentan	Maximum	Minimum	Einheiten			
Maximaler Bedarf kvarC III	Md(Pd)	1202-1203	1206-1207	-	var			
Maximaler Bedarf I L1	Md(Pd)	1058-1059	115E-115F	-	mA			
Maximaler Bedarf I L2	Md(Pd)	105A-105B	1160-1161	-	mA			
Maximaler Bedarf I L3	Md(Pd)	105C-105D	1162-1163	-	mA			

Tabelle 63 (Fortsetzung): Modbus-Speicherabbild 2 (Messvariablen)

7.3.2. ENERGIEVARIABLEN

Circutor ———

Für diese Variablen sind die **Funktionen 0x03** und **0x04** implementiert.

abelle 04. Modulos-speccherabbilo i (momencarie Energievariablen)							
Abbild 1							
Parameter	Symbol	Momentan	Einheiten				
Wirkenergie III	kWh III	3C-3D	Wh				
Induktive Blindenergie III	kvarhL III	3E-3F	varhL				
Kapazitive Blindenergie III	kvarhC III	40-41	varhC				
Scheinenergie III	kVAh III	56-57	VAh				
Erzeugte Wirkenergie III	kWh III	58-59	Wh				
Erzeugte induktive Blindenergie III	kvarhL III	5A-5B	varhL				
Erzeugte kapazitive Blindenergie III	kvarhC III	5C-5D	varhC				
Erzeugte Scheinenergie III	kVAh III	5E-5F	VAh				

Tabelle 64: Modbus-Speicherabbild 1 (momentane Energievariablen)

Tabelle 65: Modbus-Speicherabbild 1 (Energievariablen)

Abbild 1							
Parameter	Symbol	Tarif 1	Tarif 2	Gesamt- anzahl	Einheiten		
Verbrauchte Wirkenergie III (kWh)	kWh III	18C-18D	1B6-1B7	1E0-1E1	kWh		
Verbrauchte Wirkenergie III (Wh)	kWh III	18E-18F	1B8-1B9	172-173	Wh		
Verbrauchte induktive Blindenergie III (kvarhL)	kvarhL III	190-191	1BA-1BB	1E2-1E3	kvarh		
Verbrauchte induktive Blindenergie III (varhL)	kvarhL III	192-193	1BC-1BD	174-175	varh		
Verbrauchte kapazitive Blindenergie III (kvarhC)	kvarhC III	194-195	1BE-1BF	1E4-1E5	kvarh		
Verbrauchte kapazitive Blindenergie III (varhC)	kvarhC III	196-197	1C0-1C1	176-177	varh		
Verbrauchte Scheinenergie III (kVAh)	kVAh III	198-199	1C2-1C3	1E6-1E7	kVAh		
Verbrauchte Scheinenergie III (VAh)	kVAh III	19A-19B	1C4-1C5	178-179	VAh		
Verbrauchte CO ₂ -Emissionen	KgCO ₂	1AC-1AD	1D6-1D7	182-183	KgCO₂		
Kosten für verbrauchte Energie	\$	1AE-1AF	1D8-1D9	184-185	\$		
Erzeugte Wirkenergie III (kWh)	kWh III	19C-19D	1C6-1C7	1E8-1E9	kWh		
Erzeugte Wirkenergie III (Wh)	kWh III	19E-19F	1C8-1C9	17A-17B	Wh		
Erzeugte induktive Blindenergie III (kvar- hL)	kvarhL III	1A0-1A1	1CA-1CB	1EA-1EB	kvarh		
Erzeugte induktive Blindenergie III (varhL)	kvarhL III	1A2-1A3	1CC-1CD	17C-17D	varh		

Gesamt-Parameter Symbol Tarif 1 Tarif 2 Einheiten anzahl Erzeugte kapazitive Blindenergie III (kvarkvarhC III 1A4-1A5 1CE-1CF kvarh 1EC-1ED hC) Erzeugte kapazitive Blindenergie III (varkvarhC III 1A6-1A7 1D0-1D1 17E-17F varh hC) Erzeugte Scheinenergie III (kVAh) kVAh III 1A8-1A9 1D2-1D3 1EE-1EF kVAh Erzeugte Scheinenergie III (VAh) kVAh III 1AA-1AB 1D4-1D5 180-181 VAh Erzeugte CO₂-Emissionen KgCO₂ 1B0-1B1 1DA-1DB 186-187 KgCO, \$ \$ Kosten für erzeugte Energie 1B2-1B3 1DC-1DD 188-189 Stunden pro Tarif Hours 1B4-1B5 1DE-1DF 18A-18B seg

Tabelle 65 (Fortsetzung): Modbus-Speicherabbild 1 (Energievariablen)

Circutor

Tabelle 66: Modbus-Speicherabbild 2 (Energievariablen)

Abbild 2							
Parameter	Symbol	Tarif 1	Tarif 2	Gesamt- anzahl	Einheiten		
Verbrauchte Wirkenergie III (kWh)	kWh III	105E-105F	1088-1089	10DC-10DD	kWh		
Verbrauchte Wirkenergie III (Wh)	kWh III	1060-1061	108A-108B	10DE-10DF	Wh		
Verbrauchte induktive Blindenergie III (kvarhL)	kvarhL III	1062-1063	108C-108D	10E0-10E1	kvarh		
Verbrauchte induktive Blindenergie III (varhL)	kvarhL III	1064-1065	108E-108F	10E2-10E3	varh		
Verbrauchte kapazitive Blindenergie III (kvarhC)	kvarhC III	1066-1067	1090-1091	10E4-10E5	kvarh		
Verbrauchte kapazitive Blindenergie III (varhC)	kvarhC III	1068-1069	1092-1093	10E6-10E7	varh		
Verbrauchte Scheinenergie III (kVAh)	kVAh III	106A-106B	1094-1095	10E8-10E9	kVAh		
Verbrauchte Scheinenergie III (VAh)	kVAh III	106C-106D	1096-1097	10EA-10EB	VAh		
Verbrauchte CO2-Emissionen	KgCO ₂	106E-106F	1098-1099	10EC-10ED	x10		
Kosten für verbrauchte Energie	\$	1070-1071	109A-109B	10EE-10EF	x10		
Erzeugte Wirkenergie III (kWh)	kWh III	1072-1073	109C-109D	10F0-10F1	kWh		
Erzeugte Wirkenergie III (Wh)	kWh III	1074-1075	109E-109F	10F2-10F3	Wh		
Erzeugte induktive Blindenergie III (kvar- hL)	kvarhL III	1076-1077	10A0-10A1	10F4-10F5	kvarh		
Erzeugte induktive Blindenergie III (var- hL)	kvarhL III	1078-1079	10A2-10A3	10F6-10F7	varh		
Erzeugte kapazitive Blindenergie III (kvarhC)	kvarhC III	107A-107B	10A4-10A5	10F8-10F9	kvarh		
Erzeugte kapazitive Blindenergie III (varhC)	kvarhC III	107C-107D	10A6-10A7	10FA-10FB	varh		
Erzeugte Scheinenergie III (kVAh)	kVAh III	107E-107F	10A8-10A9	10FC-10FD	kVAh		
Erzeugte Scheinenergie III (VAh)	kVAh III	1080-1081	10AA-10AB	10FE-10EF	VAh		
Erzeugte CO ₂ -Emissionen	KgCO ₂	1082-1083	10AC-10AD	1100-1101	x10		
Kosten für erzeugte Energie	\$	1084-1085	10AE-10AF	1102-1103	x10		
Stunden pro Tarif	Hours	1086-1087	10B0-10B1	1104-1105	seg		

	Abbild 1 un	d Abbild 2			
Parameter	Symbol	L1	L2	L3	Einheiten
Verbrauchte Wirkenergie (kWh) T1	kWh	1400-1401	1460-1461	14CO-14C1	kWh
Verbrauchte Wirkenergie (Wh) T1	kWh	1402-1403	1462-1463	14C2-14C3	Wh
Verbrauchte induktive Blindenergie T1 (kvarhL)	kvarhL	1404-1405	1464-1465	14C4-14C5	kvarh
Verbrauchte induktive Blindenergie T1 (varhL)	kvarhL	1406-1407	1466-1467	14C6-14C7	varh
Erzeugte Wirkenergie T1 (kWh)	kWh	1410-1411	1470-1471	14D0-14D1	kWh
Erzeugte Wirkenergie T1 (Wh)	kWh	1412-1413	1472-1473	14D2-14D3	Wh
Erzeugte induktive Blindenergie T1 (kvarhL)	kvarhL	1414-1415	1474-1475	14D4-14D5	kvarh
Erzeugte induktive Blindenergie T1 (varhL)	kvarhL	1416-1417	1476-1477	14D6-14D7	varh
Verbrauchte Wirkenergie (kWh) T2	kWh	1420-1421	1480-1481	14E0-14E1	kWh
Verbrauchte Wirkenergie (Wh) T2	kWh	1422-1423	1482-1483	14E2-14E3	Wh
Verbrauchte induktive Blindenergie T2 (kvar- hL)	kvarhL	1424-1425	1484-1485	14E4-14E5	kvarh
Verbrauchte induktive Blindenergie T2 (varhL)	kvarhL	1426-1427	1486-1487	14E6-14E7	varh
Erzeugte Wirkenergie T2 (kWh)	kWh	1430-1431	1490-1491	14F0-14F1	kWh
Erzeugte Wirkenergie T2 (Wh)	kWh	1432-1433	1492-1493	14F2-14F3	Wh
Erzeugte induktive BlindenergieT2 (kvarhL)	kvarhL	1434-1435	1494-1495	14F4-14F5	kvarh
Erzeugte induktive Blindenergie T2 (varhL)	kvarhL	1436-1437	1496-1497	14F6-14F7	varh
Verbrauchte Gesamtwirkenergie (kWh)	kWh	1440-1441	14A0-14A1	1500-1501	kWh
Verbrauchte Gesamtwirkenergie (Wh)	kWh	1442-1443	14A2-14A3	1502-1503	Wh
Verbrauchte induktive Gesamtblindenergie (kvarhL)	kvarhL	1444-1445	14A4-14A5	1504-1505	kvarh
Verbrauchte induktive Gesamtblindenergie (varhL)	kvarhL	1446-1447	14A6-14A7	1506-1507	varh
Erzeugte Gesamtwirkenergie (kWh)	kWh	1450-1451	14B0-14B1	1510-1511	kWh
Erzeugte Gesamtwirkenergie (Wh)	kWh	1452-1453	14B2-14B3	1512-1513	Wh
Erzeugte induktive Gesamtblindenergie (kvarhL)	kvarhL	1454-1455	14B4-14B5	1514-1515	kvarh
Erzeugte induktive Gesamtblindenergie (var- hL)	kvarhL	1456-1457	14B6-14B7	1516-1517	varh

Tabelle 67: Modbus-Speicherabbild 1 und 2 (Energievariablen pro Phase)

7.3.3. SPANNUNGS- UND STROMOBERWELLEN

Circutor _____

Für diese Variablen sind die Funktionen 0x03 und 0x04 implementiert.

Abbild 1									
Parameter	Spannung L1	Spannung L2	Spannung L3	Einheiten					
Arm Fundamental	2AE-2AF	2CC-2CD	2EA-2EB	V x 10					
2. Oberschwingung	2B0-2B1	2CE-2CF	2EC-2ED	% x 10					
3. Oberschwingung	2B2-2B3	2D0-2D1	2EE-2EF	% x 10					
4. Oberschwingung	2B4-2B5	2D2-2D3	2F0-2F1	% x 10					
5. Oberschwingung	2B6-2B7	2D4-2D5	2F2-2F3	% x 10					
6. Oberschwingung	2B8-2B9	2D6-2D7	2F4-2F5	% x 10					

Abbild 1							
Parameter	Spannung L1	Spannung L2	Spannung L3	Einheiten			
7. Oberschwingung	2BA-2BB	2D8-2D9	2F6-2F7	% x 10			
8. Oberschwingung	2BC-2BD	2DA-2DB	2F8-2F9	% x 10			
9. Oberschwingung	2BE-2BF	2DC-2DD	2FA-2FB	% x 10			
10. Oberschwingung	2C0-2C1	2DE-2DF	2FC-2FD	% x 10			
11. Oberschwingung	2C2-2C3	2E0-2E1	2FE-2FF	% x 10			
12. Oberschwingung	2C4-2C5	2E2-2E3	300-301	% x 10			
13. Oberschwingung	2C6-2C7	2E4-2E5	302-303	% x 10			
14. Oberschwingung	2C8-2C9	2E6-2E7	304-305	% x 10			
15. Oberschwingung	2CA-2CB	2E8-2E9	306-307	% x 10			
16. Oberschwingung	308-309	328-329	348-349	% x 10			
17. Oberschwingung	30A-30B	32A-32B	34A-34B	% x 10			
18. Oberschwingung	30C-30D	32C-32D	34C-34D	% x 10			
19. Oberschwingung	30E-30F	32E-32F	34E-34F	% x 10			
20. Oberschwingung	310-311	330-331	350-351	% x 10			
21. Oberschwingung	312-313	332-333	352-353	% x 10			
22. Oberschwingung	314-315	334-335	354-355	% x 10			
23. Oberschwingung	316-317	336-337	356-357	% x 10			
24. Oberschwingung	318-319	338-339	358-359	% x 10			
25. Oberschwingung	31A-31B	33A-33B	35A-35B	% x 10			
26. Oberschwingung	31C-31D	33C-33D	35C-35D	% x 10			
27. Oberschwingung	31E-31F	33E-33F	35E-35F	% x 10			
28. Oberschwingung	320-321	340-341	360-361	% x 10			
29. Oberschwingung	322-323	342-343	362-363	% x 10			
30. Oberschwingung	324-325	344-345	364-365	% x 10			
31. Oberschwingung	326-327	346-347	366-367	% x 10			

Tabelle 68 (Fortsetzung): Modbus-Speicherabbild 1 (Spannungsoberwellen)

Circutor

Tabelle 69: Modbus-Speicherabbild 2 (Spannungsoberwellen)

Abbild 2						
Parameter	Spannung L1	Spannung L2	Spannung L3	Einheiten		
Arm Fundamental	1A28-1A29	1A48-1A49	1A68-1A69	V x 10		
2. Oberschwingung	1A2A	1A4A	1A6A	% x 10		
3. Oberschwingung	1A2B	1A4B	1A6B	% x 10		
4. Oberschwingung	1A2C	1A4C	1A6C	% x 10		
5. Oberschwingung	1A2D	1A4D	1A6D	% x 10		
6. Oberschwingung	1A2E	1A4E	1A6E	% x 10		
7. Oberschwingung	1A2F	1A4F	1A6F	% x 10		
8. Oberschwingung	1A30	1A50	1A70	% x 10		
9. Oberschwingung	1A31	1A51	1A71	% x 10		
10. Oberschwingung	1A32	1A52	1A72	% x 10		
11. Oberschwingung	1A33	1A53	1A73	% x 10		
12. Oberschwingung	1A34	1A54	1A74	% x 10		
13. Oberschwingung	1A35	1A55	1A75	% x 10		
14. Oberschwingung	1A36	1A56	1A76	% x 10		

Ci	ircu	Itor

Abbild 2						
Parameter	Spannung L1	Spannung L2	Spannung L3	Einheiten		
15. Oberschwingung	1A37	1A57	1A77	% x 10		
16. Oberschwingung	1A38	1A58	1A78	% x 10		
17. Oberschwingung	1A39	1A59	1A79	% x 10		
18. Oberschwingung	1A3A	1A5A	1A7A	% x 10		
19. Oberschwingung	1A3B	1A5B	1A7B	% x 10		
20. Oberschwingung	1A3C	1A5C	1A7C	% x 10		
21. Oberschwingung	1A3D	1A5D	1A7D	% x 10		
22. Oberschwingung	1A3E	1A5E	1A7E	% x 10		
23. Oberschwingung	1A3F	1A5F	1A7F	% x 10		
24. Oberschwingung	1A40	1A60	1A80	% x 10		
25. Oberschwingung	1A41	1A61	1A81	% x 10		
26. Oberschwingung	1A42	1A62	1A82	% x 10		
27. Oberschwingung	1A43	1A63	1A83	% x 10		
28. Oberschwingung	1A44	1A64	1A84	% x 10		
29. Oberschwingung	1A45	1A65	1A85	% x 10		
30. Oberschwingung	1A46	1A66	1A86	% x 10		
31. Oberschwingung	1A47	1A67	1A87	% x 10		

Tabelle 69 (Fortsetzung): Modbus-Speicherabbild 2 (Spannungsoberwellen)

Tabelle 70: Modbus-Speicherabbild 1 (Stromoberwellen).

		Abbild 1		
Parameter	Strom L1	Strom L2	Strom L3	Einheiten
Arm Fundamental	1F4-1F5	212-213	230-231	mA x 10
2. Oberschwingung	1F6-1F7	214-215	232-233	% x 10
3. Oberschwingung	1F8-1F9	216-217	234-235	% x 10
4. Oberschwingung	1FA-1FB	218-219	236-237	% x 10
5. Oberschwingung	1FC-1FD	21A-21B	238-239	% x 10
6. Oberschwingung	1FE-1FF	21C-21D	23A-23B	% x 10
7. Oberschwingung	200-201	21E-21F	23C-23D	% x 10
8. Oberschwingung	202-203	220-221	23E-23F	% x 10
9. Oberschwingung	204-205	222-223	240-241	% x 10
10. Oberschwingung	206-207	224-225	242-243	% x 10
11. Oberschwingung	208-209	226-227	244-245	% x 10
12. Oberschwingung	20A-20B	228-229	246-247	% x 10
13. Oberschwingung	20C-20D	22A-22B	248-249	% x 10
14. Oberschwingung	20E-20F	22C-22D	24A-24B	% x 10
15. Oberschwingung	210-211	22E-22F	24C-24D	% x 10
16. Oberschwingung	24E-24F	26E-26F	28E-28F	% x 10
17. Oberschwingung	250-251	270-271	290-291	% x 10
18. Oberschwingung	252-253	272-273	292-293	% x 10
19. Oberschwingung	254-255	274-275	294-295	% x 10
20. Oberschwingung	256-257	276-277	296-297	% x 10
21. Oberschwingung	258-259	278-279	298-299	% x 10
22. Oberschwingung	25A-25B	27A-27B	29A-29B	% x 10

Einheiten Parameter Strom L1 Strom L2 Strom L3 23. Oberschwingung 25C-25D 27C-27D 29C-29D % x 10 24. Oberschwingung 25E-25F 27E-27F 29E-29F % x 10 25. Oberschwingung 260-261 280-281 2A0-2A1 % x 10 26. Oberschwingung 262-263 282-283 2A2-2A3 % x 10 264-265 284-285 2A4-2A5 % x 10 27. Oberschwingung 266-267 286-287 2A6-2A7 % x 10 28. Oberschwingung 29. Oberschwingung 268-269 288-289 2A8-2A9 % x 10 30. Oberschwingung 26A-26B 28A-28B 2AA-2AB % x 10 31. Oberschwingung 26C-26D 28C-28D 2AC-2AD % x 10

Tabelle 70 (Fortsetzung): Modbus-Speicherabbild 1 (Stromoberwellen).

Circutor

Tabelle 71: Modbus-Speicherabbild 2 (Stromoberwellen).

Abbild 2						
Parameter	Strom L1	Strom L2	Strom L3	Einheiten		
Arm Fundamental	1A88-1A89	1AA8-1AA9	1AC8-1AC9	mA x 10		
2. Oberschwingung	1A8A	1AAA	1ACA	% x 10		
3. Oberschwingung	1A8B	1AAB	1ACB	% x 10		
4. Oberschwingung	1A8C	1AAC	1ACC	% x 10		
5. Oberschwingung	1A8D	1AAD	1ACD	% x 10		
6. Oberschwingung	1A8E	1AAE	1ACE	% x 10		
7. Oberschwingung	1A8F	1AAF	1ACF	% x 10		
8. Oberschwingung	1A90	1AB0	1AD0	% x 10		
9. Oberschwingung	1A91	1AB1	1AD1	% x 10		
10. Oberschwingung	1A92	1AB2	1AD2	% x 10		
11. Oberschwingung	1A93	1AB3	1AD3	% x 10		
12. Oberschwingung	1A94	1AB4	1AD4	% x 10		
13. Oberschwingung	1A95	1AB5	1AD5	% x 10		
14. Oberschwingung	1A96	1AB6	1AD6	% x 10		
15. Oberschwingung	1A97	1AB7	1AD7	% x 10		
16. Oberschwingung	1A98	1AB8	1AD8	% x 10		
17. Oberschwingung	1A99	1AB9	1AD9	% x 10		
18. Oberschwingung	1A9A	1ABA	1ADA	% x 10		
19. Oberschwingung	1A9B	1ABB	1ADB	% x 10		
20. Oberschwingung	1A9C	1ABC	1ADC	% x 10		
21. Oberschwingung	1A9D	1ABD	1ADD	% x 10		
22. Oberschwingung	1A9E	1ABE	1ADE	% x 10		
23. Oberschwingung	1A9F	1ABF	1ADF	% x 10		
24. Oberschwingung	1AA0	1ACO	1AE0	% x 10		
25. Oberschwingung	1AA1	1AC1	1AE1	% x 10		
26. Oberschwingung	1AA2	1AC2	1AE2	% x 10		
27. Oberschwingung	1AA3	1AC3	1AE3	% x 10		
28. Oberschwingung	1AA4	1AC4	1AE4	% x 10		
29. Oberschwingung	1AA5	1AC5	1AE4	% x 10		
30. Oberschwingung	1AA6	1AC6	1AE6	% x 10		
31. Oberschwingung	1AA7	1AC7	1AE7	% x 10		

7.3.4. LÖSCHEN DER PARAMETER

Circutor -

Für diese Variable ist die Funktion 0x05 implementiert.

Parameter	Adresse	Gültiger Bereich der Werte
Löschen der Maximalwerte	849	FF00
Löschen der Minimalwerte	84A	FF00
Initialisierung des maximalen Bedarfs	852	FF00
Löschen der Stundenzähler (Tarif 1)	837	FF00
Löschen der Stundenzähler (Tarif 2)	83A	FF00
Löschen der Energien pro Phase (L1, L2, L3) und der dreiphasigen	874	FF00
Löschen der dreiphasigen Energien	834	FF00
Löschen der Energien pro Phase (L1, L2, L3)	873	FF00
Löschen der Energien pro Phase (L1)	870	FF00
Löschen der Energien pro Phase (L2)	871	FF00
Löschen der Energien pro Phase (L3)	872	FF00
Löschen aller vorherigen Parameter	898	FF00
Löschen des digitalen Eingangsimpulszählers	884	FF00

Tabelle 72: Modbus-Speicherabbild: Löschen der Parameter.

7.3.5. LEISTUNGSSTATUS

Für diese Variable ist die **Funktion 0x04** implementiert.

Diese Variable gibt den Quadranten an, in dem das Gerät arbeitet.

Tabelle 73: Modbus-Speicherabbild: Leistungsstatus.

Leistungsstatus					
Variable	Adresse	Standardwert			
Leistungsstatus	7D1	-			

Das Format der Variable ist in Tabelle 74 dargestellt:

Tabelle 74: Format der Variable: Leistungsstatus

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	1: Kapazitive	1: Induktive	1: Erzeugte	1: Verbrauchte

7.3.6. ERKENNUNG EINER FALSCHEN DREHRICHTUNG

Für diese Variable ist die **Funktion 0x04** implementiert.

Diese Variable zeigt an, ob in den Spannungen eine falsche Drehrichtung festgestellt wurde.

Erkennung einer falschen Drehrichtung						
Variable	Adresse	Wert				
Erkennung einer falschen Drehrichtung	7D5	0: Kein Fehler erkannt 1: Fehler erkannt				

Tabelle 75: Modbus-Speicherabbild: Erkennung einer falschen Drehrichtung.

7.3.7. SERIENNUMMER DES GERÄTS

Für diese Variable ist die Funktion 0x04 implementiert.

Tabelle 76: Modbus-Speicherabbild: seriennummer des geräts.

Circutor

Seriennummer des geräts	
Variable	Adresse
Seriennummer des geräts	5AA - 5AB - 5AC - 5AD - 5AE - 5AF - 5BO

7.3.8. DIGITALEINGANG: IMPULSZÄHLER

Für diese Variable sind die **Funktionen 0x04** und **0x10** implementiert.

Wenn der Digitaleingang als Impulszähler konfiguriert wurde, wird der Wert des Zählers in dieser Variablen angezeigt.

labelle 77:Modbus-Speicherabbild: Impulszanier.					
Impulszähler					
Variable Format Adresse					
Digitaler Eingangsimpulszähler	Uint [64]	4E23 - 4E24 - 4E25 - 4E26			

7.3.9. KONFIGURATIONSVARIABLEN DES GERÄTS

Für diese Variable sind die Funktionen 0x04 und 0x10 implementiert.

Die Modbus-Funktion des Geräts prüft nicht, ob die aufgezeichneten Variablen innerhalb der korrekten Bereiche liegen. Sie werden nur beim Lesen aus dem EEPROM überprüft. Wenn ein Parameter mit einem falschen Wert aufgezeichnet wird, wird das Gerät mit dem Wert konfiguriert, den es standardmäßig hat. Die von Modbus vorgenommene Konfiguration wird erst wirksam, wenn das Gerät zurückgesetzt wird.

7.3.9.1. Umwandlungsverhältnisse

Tabelle 78: Modbus-Speicherabbild: Umwandlungsverhältnisse.

Umwandlungsverhältnisse				
Konfigurationsvariable ⁽⁷⁾	Adresse	Gültiger Bereich der Werte	Standard-wert	
Primärspannung	2710 - 2711	1 - 99999	1	
Sekundärspannung	2712	1 - 999	1	
Primärstrom ⁽⁸⁾	2713	1 - 10000	5	
Sekundärstrom ⁽⁹⁾	2714	0:/1A 1:/5A	1	

⁽⁷⁾ Spannungsverhältnis x Stromverhältnis \leq 300000.

Spannungsverhältnis ≤ 1000.

⁽⁸⁾ Dieser Parameter ist konfigurierbar bei den Modellen CVM-E3-MINI-ITF, CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC und CVM-E3-MINI-MC-WiEth.

⁽⁹⁾ Dieser Parameter ist konfigurierbar bei den Modellen CVM-E3-MINI-ITF und CVM-E3-MINI-ITF-WiEth.

Hinweis: Das Spannungsverhältnis ist das Verhältnis zwischen der Primär- und der Sekundärspannung. *Hinweis:* Die 5 Datensätze müssen gleichzeitig (in der Gruppe) geschrieben oder gelesen werden, sonst reagiert das Gerät mit einem Fehler.

7.3.9.2. Art des flexiblen Sensors (Modelle CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth)

Circutor

Tabelle 79:Modbus-Speicherabbild: Art des flexiblen Sensors				
Art des flexiblen Sensors				
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard-wert	
Flexibler Sensor	2756	0: 100 uV/A 1: 76 uV/A	0	

7.3.9.3. Anzahl der Quadranten

Tabelle 80. Modbus-S	neicherabhild: Anzahl	der	Quadranten
	percherauunu. Anzam	uei	Quadranten

Anzahl der Quadranten				
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard-wert	
Anzahl der Quadranten	2B64	0: 4 Quadranten 1: 2 Quadranten	0	

7.3.9.4. Messvereinbarungen

labelle &I:Modbus-Speicnerabbild: Messvereinbarungen
--

Messvereinbarungen				
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard-wert	
Messvereinbarungen	2886	0: Circutor 1: IEC 2: IEEE	0	

7.3.9.5. Messsystem

Messsystem				
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard-wert	
Messsystem	2B5C	 0: 4- 3Ph Dreiphasennetz mit 4 Drähten 1: 3- 3Ph Dreiphasennetz mit 3 Drähten 2: 3- A- 07 Dreiphasennetz mit 3 Drähten, Aron.⁽¹⁰⁾ 3: 3- 2Ph Zweiphasennetz mit 3 Drähten. 4: 2- 2Ph Einphasennetz von Phase zu Phase mit 2 Drähten. 5: 2- IPh Einphasennetz von Phase zu Neutralleiter mit 2 Drähten. 	0	

⁽¹⁰⁾ Diese Option ist nicht verfügbar bei den Modellen CVM-E3-MINI-FLEX und CVM-E3-MINI-FLEX-WiEth.

7.3.9.6. Maximaler Bedarf

Maximaler Bedarf				
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard- wert	
Integrationszeit	274C	0: Die Berechnung des maximalen Bedarfs wird nicht durchgeführt 1 - 60 Minuten	0	

7.3.9.7. Backlight, Hintergrundbeleuchtung des Displays

Tabelle 84: Modbus-Speicherabbild: Backlight

Circutor

	•			
Backlight				
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard- wert	
Backlight	2B5E	1 - 999 Sekunden	300 s	

7.3.9.8. Aktivierung des Anzeigenbildschirms für Oberschwingungen

Tabelle 85: Modbus-Speicherabbild: Anzeige der Oberschwingungen

Anzeige der Oberschwingungen			
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard- wert
Anzeige der Oberschwingungen	2862	0: No 1: Yes	0

7.3.9.9. CO₂-Emissionen beim Verbrauch und bei der Erzeugung

Tabelle 86: Modbus-Speicherabbild: CO₂-Emissionen beim Verbrauch und bei der Erzeugung

CO ₂ -Emissionen							
Konfigurationsvariable ⁽¹¹⁾	Adresse	Gültiger Bereich der Werte	Standard- wert				
Emissionsverhältnis von Tarif 1 beim Verbrauch	2724	0 - 1.9999	0				
Emissionsverhältnis von Tarif 2 beim Verbrauch	2725	0 - 1.9999	0				
Emissionsverhältnis von Tarif 1 bei der Erzeugung	2728	0 - 1.9999	0				
Emissionsverhältnis von Tarif 2 bei der Erzeugung	2729	0 - 1.9999	0				

⁽¹¹⁾ Sie haben 1 Dezimalstelle.

7.3.9.10. Energiekosten beim Verbrauch und bei der Erzeugung.

Tabelle 87: Modbus-Speicherabbild: Energiekosten beim Verbrauch und bei der Erzeugung

Kosten pro kWh							
Konfigurationsvariable ⁽¹²⁾	Adresse	Gültiger Bereich der Werte	Standard- wert				
Kosten pro kWh des Tarifs 1 beim Verbrauch	272C	0 - 1.9999	0				
Kosten pro kWh des Tarifs 2 beim Verbrauch	272D	0 - 1.9999	0				
Kosten pro kWh des Tarifs 1 bei der Erzeugung	2730	0 - 1.9999	0				
Kosten pro kWh des Tarifs 2 bei der Erzeugung	2731	0 - 1.9999	0				

⁽¹²⁾ Sie haben 1 Dezimalstelle.

7.3.9.11. Programmierung des digitalen Ausgangs T1

Hinweis: Die *CVM-E3-MINI-xxx-WiEth*-Modelle haben keinen Digitalausgang, da die Aktivierung des Alarms nur die Aktivierung der LED für den/die *ALARM/ENERGIEIMPULSE* auslöst.

1 3 3 3 1						
Programmierung des digitalen Ausgangs T1 als Alarm						
Konfigurationsvariable Adresse Gültiger Bereich der Werte Standard						
Maximalwert	2AF8-2AF9	je nach Variable	0			
Minimalwert	2AFA-2AFB	je nach Variable	0			
Code der Variable:	2AFC	Tabelle 38 und Tabelle 21	0			

Tabelle 88: Modbus-Speicherabbild: Programmierung des digitalen Ausgangs T1 (Alarm).

Programmierung des digitalen Ausgangs T1 als Alarm						
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard-wert			
Verzögerung bei der Einschaltung	2AFD	0 - 9999 Sekunden	0			
Hysterese	2AFE	0 - 99 %	0			
Verriegelung (Latch)	2AFF	0: No 1: Yes	0			
Selbsthaltungszeit ⁽¹³⁾	2B02	0 - 600 Sekunden	0			
Verzögerung bei der Abschaltung	2B00	0 - 9999 Sekunden	0			
Status der Kontakte	2B01	0: Normalerweise geöffnet 1: Normalerweise geschlossen	0			

Tabelle 88 (Fortsetzung): Modbus-Speicherabbild: Programmierung des digitalen Ausgangs T1 (Alarm).

⁽¹³⁾ Die **Selbsthaltungszeit** ist die Zeit in Sekunden, die der Alarm erhalten bleibt. Wird nach dieser Zeit der Alarmzustand nicht mehr aufrechterhalten, wird die Abschaltverzögerung aktiviert. Wenn eine **0** programmiert ist, bleibt der Alarm erhalten und kann nur manuell ausgeschaltet werden.

Tabelle 89: Modbus-	-Speicherabbild:	Programmier	una des	diaitalen	Ausoanos T1	(Impulsausgang).
		· · · · · · · · · · · · · · · · · · ·	g			(

Programmierung des digitalen Ausgangs T1 als Impulsausgang						
Konfigurationsvariable	Standard- wert					
Kilowatt pro Impuls	2B20-2B21	0.01 - 999.99 kWh	1.00 kWh			
Code der Variable:	2AFC	Tabelle 40	0			
Impulsbreite	2B22	30 - 500 ms	100 ms			

7.3.9.12. Digitaler Eingang (Modelle CVM-E3-MINI-xxx)

Circutor

Der Betrieb des Eingangs als Impulszähler ist unabhängig von der Programmierung des Digitaleingangs, d. h. das Gerät kann als Logikeingang oder Tarifwahl gleichzeitig als Impulszähler verwendet werden.

Tabelle 90. Modbus-Speicherabbil	d. Konfiguration d	es dinitalen	Finnanns
abelie 50. Moubus Speicheraubli	u. Konnyuration u	es urgitalen	Lingangs

Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard- wert
Betriebsmodus	2866	0: Tarif 1: Logischer Zustand	0
Impulszähler: Gewicht (14)	2B67	0 - 65535	1
Impulszähler: Pulsbreite (14)	2B68	10 - 10000 ms	30

⁽¹⁴⁾ Damit der Digitaleingang als **Impulszähler** funktioniert, muss dieser Parameter mit einem Wert **> 0** programmiert werden.

Sie können auch den Status des digitalen Eingangs lesen, wenn er sich im Logikmodus befindet:

Für diese Variable ist die **Funktion 0x04** implementiert.

Tabelle 91: Modbus-Speicherabbild: Status des digitalen Eingangs (Modus Logikstatus)

Status des digitalen Eingangs						
Variable	Adresse	Standardwert				
Status des digitalen Eingangs	4E20	-				

Das Format der Variable ist in Tabelle 92 dargestellt:

Taballa	02.	Leaner	4.0.0	Variables	Chalua	4.0.0	disibolos	Licesco
Tanelle	97	Formar	ner	varianie	Starus	ner	niniraien	FINDANDE
1000110				101100101	0.0.00		orgreeter	Enigonge

Circutor

			5 5				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	0	0	0	Eingang 1 0: OFF 1: ON

7.3.9.13. Tarifauswahl (Modelle CVM-E3-MINI-xxx-WiEth)

Tabelle 93: Modbus-Speicherabbild: Konfiguration der Tarifauswahl

Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard-wert
Tarifauswahl	2B66	0 : Tarif 1 1 : Tarif 2	0

7.3.9.14. Digitaler Ausgang (Modelle CVM-E3-MINI-xxx)

Lesen des Status des digitalen Ausgangs. Für diese Variable ist die **Funktion 0x04** implementiert

Tabelle 94: Modbus-Speicherabbild: Status des digitalen Ausgangs.

Status des digitalen Ausgangs				
Variable Adresse Standardwert				
Status des digitalen Ausgangs	4E21	-		

Das Format der Variable ist in Tabelle 95 dargestellt:

Tabelle 95: Format der Variable: Status der digitalen Ausgänge.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	0	0	0	Ausgang 1 0: OFF 1: ON

7.3.9.15. Kommunikation (Modelle CVM-E3-MINI-xxx)

Tabelle 96: Modbus-Speicherabbild: Kommunikation

Kommunikation					
Konfigurationsvariable	Adresse	Gültiger Bereich der Werte	Standard- wert		
Protokoll	2742	0: Modbus 1: BACnet	0		
Modbus und BACnet: Nummer des Peripheriegeräts	2743	0 - 255	1		
Modbus: Übertragungsgeschwindigkeit	2744	0: 9600 - 1: 19200 - 2: 38400 ⁽¹⁵⁾ - 3: 57600 ⁽¹⁵⁾ - 4: 115200 ⁽¹⁵⁾	1		
Modbus: Parität	2745	0: Keine Parität 1: Ungerade Parität 2: Gerade Parität	0		
Modbus: Datenbits	2746	0: 8 bits 1: 7 bits	0		
Modbus: Stoppbits	2747	0: 1 Stoppbit 1: 2 Stoppbits	0		

labelle 90 (Fortsetzung). Moubus-speicherabbilu. Kommunikation.				
Kommunikation				
Konfigurationsvariable Adresse Gültiger Bereich der Werte				
BACnet: Geräte-ID	2EE0-2EE1	0- 99999	1	
BAcnet: MAC	2EE2	0 - 127	2	
BAcnet: Übertragungsgeschwindigkeit	2744	0: 9600 - 1: 19200 - 2: 38400 ⁽¹⁵⁾ - 3: 57600 ⁽¹⁵⁾ - 4: 115200 ⁽¹⁵⁾	1	

Tabelle 96 (Fortsetzung): Modbus-Speicherabbild: Kommunikation.

⁽¹⁵⁾ Verfügbar auf Geräten mit Softwareversion **v2.xx.**

7.3.9.16. Passwortkonfiguration

Circutor

Mit diesen Variablen kann der Zugriff auf das Programmiermenü gesperrt und entsperrt sowie der Passwortcode geändert werden. Die einzige Möglichkeit, den Passwortcode zu ändern, besteht in diesem Befehl.

Das Gerät benötigt nicht das alte Passwort, um das neue zu speichern, da das neue Passwort direkt ohne irgendeine Überprüfung gespeichert wird.

Passwort					
Variable	Adresse	Gültiger Bereich der Werte	Standardwert		
Passwort ⁽¹⁶⁾	2B70	0 - 9999	1234		
Sperren-Entsperren	2B71	0: Entsperren 1: Sperren	0		

	Madhua C	!	. De e euro ellue e G	a a bi a a
IANELLE 97.		neicherannlin	. Hazzworrkour	Inuration
1000110 271	1100000 0	pereneradound		igorocioni

⁽¹⁶⁾ Der Wert des Passworts wird hexadezimal gelesen und geschrieben.

7.4.- BACnet-PROTOKOLL

BACnet ist ein Kommunikationsprotokoll für die Gebäudeautomation und Steuerungsnetzwerke (Building Automation and Control NETworks). Dieses Protokoll ersetzt die proprietäre Kommunikation jedes Geräts und macht es zu einer Einheit gemeinsamer Kommunikationsregeln, die die vollständige Integration der Gebäudeautomations- und Steuerungssysteme verschiedener Hersteller ermöglichen.

Das Gerät verfügt über eine **BACNet** MS/TP-Kommunikation gemäß den Spezifikationen der ANSI/ ASHRAE-Norm 135 (ISO 16484-5).

Über eine RS485-Verbindung kann das Gerät eine Verbindung zu einem BACnet-Netzwerk herstellen und alle Objekte und Dienste einbeziehen, die in dem beigefügten PICS-Dokument (Protocol Implementation Conformance Statement) definiert sind. (*"7.4.1.- PICS-DOKUMENT"*).

Die Standardgeschwindigkeit beträgt 19200 bps und der MAC beträgt 2 (Knotennummer), die über den Konfigurationsbildschirm oder durch Schreiben der Variablen BaudRate und MAC_Address geändert werden können. Die Identifikation (Device_ID) kann über den Konfigurationsbildschirm, über die Schreibeigenschaft für die Variable oder über die Variable Device_ID geändert werden.

Eine andere Option besteht darin, die Eigenschaft Object_Name im Device-Objekt zu überschreiben: a) #Baud x – wobei x Folgendes sein kann: 9600, 19200, 38400

b) #MAC x – wobei x Folgendes sein kann: 0 ... 127

c) #ID x – wobei x Folgendes sein kann: 0 ... 99999

Weitere Informationen zum Protokoll finden Sie www.bacnet.org.

Circutor

7.4.1.- MAPA PICS

PICS

Vendor Name:	CIRCUTOR	
Product Name:	CVM-E3-MIN	I
Product Model Number:	837	
Application Software Version:	1.0	
Firmware Revision:	0.7.1	
BACnet Protocol Revision:	10	

Product Description:

Electrical energy meter	

BACnet Standardized Device Profile (Annex L)

List all BACnet Interoperability Building supported (see Annex K in BACnet Addendum 135d):

DS-RP-B Read Property
DS-WP-B Write Propery
DS-RPM-B Read Property Multiple
DM-DDB-B Dynamic Device Binding
DM-DOB-B Dynamic Object Binding
DM-DCC-B Device Communication Control
DM-RD-B Reinitialize Device

Which of the following device binding methods does the product support? (check one or more)

х	Recive Who-Is, send I-Am (BIBB DM-DDB-B)
х	Recive Who-Has, send I-Have (BIBB DM-DOB-B)

Standard Object Types Supported:

Analog Input Object Type

1. Dynamically creatable using BACnet's CreateObject service? No					
2. Dynamically deleatable using BACnet's DeleteObject service?	No				
3. List of optional properties supported: max_pres_value min_pres_valu					
4. List of all properties that are writable where not otherw is a required by this standard					
5. List of proprietary properties:					
6. List of any property value range restrictions:					

Properly Identifier

Object_Name m	hax 32 characters
---------------	-------------------

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Tensión fase-neutro	Voltage phase to neutral	V 1	AIO	Ph2NU1	V
Corriente	Current	A 1	Al1	Ph1Current	А
Potencia activa	Active power	kW 1	AI2	ActPwrPh1	kW
Potencia reactiva	Reactive power	kvar 1	AI3	ReactPwrPh1	kvar
Factor de potencia	Power factor	PF 1	Al4	PwrFactPh1	PF
Tensión fase-neutro	Voltage phase to neutral	V 2	AI5	Ph2NU2	V
Corriente	Current	A 2	AI6	Ph2Current	A
Potencia activa	Active power	kW 2	AI7	ActPwrPh2	kW

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Potencia reactiva	Reactive power	kvar 2	AI8	ReactPwrPh2	kvar
Factor de potencia	Power factor	PF 2	AI9	PwrFactPh2	PF
Tensión fase-neutro	Voltage phase to neutral	V 3	AI10	Ph2NU3	V
Corriente	Current	A 3	AI11	Ph3Current	А
Potencia activa	Active power	kW 3	AI12	ActPwrPh3	kW
Potencia reactiva	Reactive power	kvar 3	AI13	ReactPwrPh3	kvar
Factor de potencia	Power factor	PF 3	Al14	PwrFactPh3	PF
Potencia activa trifásica	Three phase active power	kW III	AI15	ActPw0n3Ph	kW
Potencia inductiva trifásica	Three phase reactive inductive power	kvarL III	Al16	InductPw0n3Ph	kvarL
Potencia capacitiva trifásica	Three phase capacitive inductive power	kvarC III	AI17	CapPwOn3Ph	kvarC
Cos φ trifásico	Three phase cos ϕ	Cos φ III	AI18	Cosphi	Cos φ
Factor de potencia trifásico	Three phase power factor	PFIII	AI19	PwFactOn3Ph	PF
Frecuencia (L2)	Frequency	Hz	AI20	Frequency	Hz
Tensión fase-fase	Voltage phase to phase	V12	AI21	Ph2PhU12	V
Tensión fase-fase	Voltage phase to phase	V23	AI22	Ph2PhU23	V
Tensión fase-fase	Voltage phase to phase	V31	AI23	Ph2PhU31	V
%THD V	%THD V	%THD V1	AI24	THDVal_U1	%THD
%THD V	%THD V	%THD V2	AI25	THDVal_U2	%THD
%THD V	%THD V	%THD V3	AI26	THDVal_U3	%THD
%THD A	%THD A	%THD A1	AI27	THDVal_11	%THD
%THD A	%THD A	%THD A2	AI28	THDVal_12	%THD
%THD A	%THD A	%THD A3	AI29	THDVal_13	%THD
Energía activa	Active energy	kW∙h III	AI30	ActEnergy	kW∙h
Energía reactiva induc- tiva	Reactive inductive energy	kvarL•h III	AI31	InductEnergy	kvarL∙h
Energía reactiva capa- citiva	Reactive capacitive energy	kvarC•h III	AI32	CapEnergy	kvarC∙h
Energía Aparente trifá- sica	Three phase aparent energy	kVA∙h III	AI33	AppEnergy	kVA∙h
Energía activa generada	Three phase generated active energy	kW∙h III (-)	AI34	ActEnergy_exp	kW∙h
Energía inductiva gene- rada	Three phase generated reactive inductive energy	kvarL∙h III (-)	AI35	IndEnergy_exp	kvarL∙h
Energía capacitiva ge- nerada	Three phase genera- ted reactive capacitive energy	kvarC∙h III(-)	AI36	CapEnergy_exp	kvarC•h
Energía aparente gene- rada	Three phase generated aparent energy	kVA∙h III (-)	AI37	AppEnergy_exp	kVA∙h
Máxima demanda kvarL	Maximum demand kvarL	kvarL III	AI38	MaxDemand_ kvarL	kvarL
Potencia aparente L1	Aparent power L1	kVA	AI40	AppPwrPh1	kVA
Potencia aparente L2	Aparent power L2	kVA	AI41	AppPwrPh2	kVA
Potencia aparente L3	Aparent power L3	kVA	AI42	AppPwrPh3	kVA
Potencia aparente trifásica	Three phase aparent power	kVAIII	AI43	AppPw3Ph	kVA

Circutor

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Máxima demanda l1	Maximum demand I1	Md (A1)	AI44	MaxDemand_A1	А
Máxima demanda l2	Maximum demand I2	Md(A2)	AI45	MaxDemand_A2	А
Máxima demanda I3	Maximum demand I3	Md(A3)	AI46	MaxDemand_A3	А
Máxima demanda kvarC	Maximum demand kvarC	kvarC III	AI47	MaxDemand_ kvarC	kvarC
Máxima demanda kW	Maximum demand kW	kW III	AI48	MaxDemand_kW	kW
Máxima demanda kVA	Maximum demand kVA	kVA III	AI49	MaxDemand_ kVA	kVA

Analog Value Object Type

1. Dynamically creatable using BACnet's	No			
2. Dynamically deleatable using BACnet	's DeleteObject service?	No		
3. List of optional properties supported:	3. List of optional properties supported:			
4. List of all properties that are writable	where not otherwise required by this sta	andard		
5. List of propietary properties:				
Property Identifier	Property Datatype Meaning			
5. List of object identifiers and their meaning in this device				
Object ID	Object Name	Description		
AV1	MAC_Address	MAC		
AV2	BaudRate	BAUD RATE		
AV3	Device_ID	DEVICE ID		

Device Object Type

1. Dynamically creatable using BACnet's CreateObject service?		No	
2. Dynamically deleatable using BACnet's DeleteObject service?		No	
3. List of optional properties supported:		Description, Protocolo_Conformance_Class	
4. List of all properties that are writable	where not otherwise required	by this standard	
Object_Name Max_Master Max_Info_Frames Object_Identifier			
5. List of propietary properties:	5. List of propietary properties:		
5. List of any property value range restrictions			
Property Identifier	Restrictions		
Object_Name	< 32 bytes		
Object_Identifier	Device Type only		
Number_Of_APDU_Retries	0-255		
APDU_Timeout	0-65535 miliseconds		
Vendor_Identifier	0-65535		

Data Link Layer Options (check all that supported):

Х	MS/TP master (Clause 9), baud rate(s): 9.6, 19.2k, 38.4kB/s			
Character Sets Supported (check all that apply):				
Indicating s	upport for multiple character set does not imply that they can all be supported simultaneously.			
Х	ANSI X3.4			

8.- CVM-E3-MINI-xxx-WiEth: KOMMUNIKATION

Circutor

Die CVM-E3-MINI-xxx-WiEth-Geräte verfügen über Ethernet-, Wi-Fi- und Bluetooth®-Kommunikation.

Die Kommunikationskonfiguration kann über die Webseite zur Gerätekonfiguration erfolgen (*"8.5.- KONFIGURATIONSSEITE"*) oder über die Geräteanzeige siehe (*"5.5.- BILDSCHIRME FÜR DIE ETHERNET - Wi-Fi - Bluetooth® KOMMUNIKATION (Modelle CVM-E3-MINI-xxx-WiEth)"*.

Das Modbus-Abbild in Abschnitt *"7.3.- MODBUS-BEFEHLE"* gilt auch für die CVM-E3-MINI-xxx-WiEth-Geräte unter Verwendung des Modbus-TCP-Protokolls.

8.1.- NUTZUNGS- UND GESUNDHEITSUMGEBUNG

Die drahtlose Kommunikation sendet wie andere Funkgeräte auch hochfrequente elektromagnetische Energie aus.

Da die drahtlose Kommunikation den Richtlinien der Sicherheitsstandards und -empfehlungen für Hochfrequenzen entspricht, kann sie von den Benutzern sicher verwendet werden.

In bestimmten Umgebungen oder Situationen kann die Verwendung der drahtlosen Kommunikation durch den Bauherrn oder den verantwortlichen Vertreter der Einrichtung eingeschränkt werden. Diese Situationen können Folgende sein:

✓ Verwendung von drahtlosen Verbindungen an Bord von Flugzeugen, in Krankenhäusern oder in der Nähe von Tankstellen, explosionsgefährdeten Bereichen, medizinischen Implantaten oder im Körper implantierten elektronischen medizinischen Geräten (Herzschrittmacher usw.).

✓ In jeder anderen Umgebung, in der das Risiko einer Störung anderer Geräte oder Dienste als gefährlich eingestuft wird.

Wenn Sie sich über die Richtlinien für die Verwendung drahtloser Geräte in einer bestimmten Einrichtung (Flughafen, Krankenhaus usw.) nicht sicher sind, sollten Sie eine Genehmigung für die Verwendung von drahtloser Kommunikation anfordern.

8.2.- Wi-Fi-KOMMUNIKATION

Wi-Fi ist heutzutage eine der am weitesten verbreiteten drahtlosen Technologien, um Informationen zwischen elektronischen Geräten zu verbinden und auszutauschen, ohne dass sie physisch verbunden werden müssen.

Die **CVM-E3-MINI-xxx-WiEth**-Modelle verfügen über Wi-Fi-Kommunikation im 2,4-GHz-Band gemäß den Standards IEEE 802.11b, IEEE 802.11g und IEEE 802.11n.

Hinweis: Um die IP-Adresse des Geräts beizubehalten und die Wi-Fi-Kommunikation nicht zu verlieren, wird empfohlen, den Router so zu konfigurieren, dass den CVM-E3-MINI-xxx-WiEth-Geräten eine feste IP-Adresse zugewiesen wird, die auf die MAC-Adresse des Geräts verweist.
8.3.- Bluetooth®-KOMMUNIKATION

Das Gerät verfügt über die drahtlose Bluetooth®-Kommunikation.

Die drahtlose Bluetooth[®]-Technologie ist eine Funktechnologie mit kurzer Reichweite, die eine drahtlose Datenkommunikation zwischen Computern in einer Reichweite von ca. 10 Metern ermöglicht.

Circutor

8.4.- MOBILE ANWENDUNG

Die mobile **MyConfig**-Anwendung, mit der Sie die Wi-Fi und Ethernet-Kommunikation über Bluetooth® konfigurieren können, kann kostenlos von Google Play (Android) heruntergeladen werden.

 ■ ● ■ * * * ≈ 42% ← Configuración ↓ 	010:18 C
* A E3-Mini-0081	
ESTADO DE WI-FI	
Activado Activa	d
SSID CIRCUTOR-W	IF DISPOSITIVOS ENLAZADOS
Contraseña	E3-Mini-0081
Estado de la conexión Conec	E3-Mini-0082
Dirección IP 10.0.12	3
Dirección MAC 4C:11:AE:D7:	NUEVOS DISPOSITIVOS ENCONTRADOS
	No se han encontrado nuevos dispositivos

Abbildung 34: MyConfig.

Nach der Aktivierung von Bluetooth® führen Sie ein Gerätescan durch. Ein Gerät mit dem Namen **E3-Mini-XXXX** erscheint in der Liste, wobei XXXX die letzten 4 Ziffern der Seriennummer des Gerätes sind.

Verbinden Sie das Gerät über Bluetooth® durch Drücken auf *"Start"*. Der PIN-Code entspricht den letzten 6 Ziffern der Seriennummer (S/N) des Geräts.

8.5.- KONFIGURATIONSSEITE

Circutor

Um auf die interne Konfigurationsseite zugreifen zu können, muss die IP-Adresse des Geräts im Webbrowser eingegeben werden.

Die IP-Adresse des Geräts können Sie auf den Bildschirmen *"5.5.2. ETHERNET-KOMMUNIKATION: IP-AD-RESSE"* für eine Verbindung über Ethernet oder *"5.5.6. Wi-Fi-KOMMUNIKATION: IP-ADRESSE"* für eine Wi-Fi-Verbindung herausfinden.

Um auf die Konfigurationswebseite zuzugreifen, wird der in **Tabelle 35** gezeigte Bildschirm angezeigt, in den Sie den Benutzernamen und das Passwort eingeben müssen. **Tabelle 98** zeigt die Standardwerte.

Circutor	
Login	
Username	×
Password	ø
Did you forget your password?	
	Log in \rightarrow

Abbildung 35: Zugriff auf die Website zur Konfiguration.

Tabelle 98:Zugriff auf die Website zur Konfiguration.

Zugriff auf die Website zur Konfiguration.			
Username admin			
Password	circutor		

Wenn Sie das Zugangspasswort vergessen haben, klicken Sie auf die Option **"Did you forget your password?**", um das Passwort mithilfe der Seriennummer des Geräts ändern zu können.

Auf der Website des Geräts können Sie:

✓ Auf dem Bildschirm Device Info die Geräteinformationen und die Konfiguration der Ethernet, Wi-Fi und Bluetooth-Kommunikation anzeigen (Abbildung 36).

Circutor

Circutor	CVM-E3-MINI-WiEth	
Device Info	Device Info	
Communications	Device Variables	
FIIIIWale	Serial Number	21851543050151
	Manufacturing Date	Year: 2018 Week: 51
	Model	CVM-E3-MINI-ITF-WiEth
	Communications Firmware Version	1.0.2
	Measure Firmware Version	1.17
	Ethernet Communications	
	DHCP	Enabled
	Ethernet Link Status	Connected
	Ethernet IP	10.0.120.32
	Ethernet Netmask	255.255.255.0
	Ethernet Gateway	10.0.120.254
	Ethernet MAC	24:6F:28:D4:28:AF
	Wi-Fi Communications	
	Wi-Fi	Enabled
	Wi-Fi Status	
	Wi-Fi Name (SSID)	Pruebas
	WI-FI IP	10.0.123.15
	WI-FI Netmask	255.255.255.0
	Wi-Fi Gateway	10.0.123.254
	Wi-Fi MAC	24:6F:28:D4:28:AC
	Bluetooth	
	Bluetooth Name	E3-Mini-0151

Abbildung 36: Website: Device Info.

Circutor —

✓ Auf dem Bildschirm **Communications** die Konfiguration der Ethernet- und Wi-Fi-Kommunikation ändern (Abbildung 37).

Circutor	CVM-E3-MINI-WiEth	
Device Info	Communications	
Communications		
Firenuese	Ethernet Communications	
Firmware	DHCP	
	Ethernet IP	10.0.120.32
	Ethernet Netmask	255.255.255.0
	Ethernet Gateway	10.0.120.254
		🕒 Save
	Wi-Fi Communications	
	Wi-Fi	
	Wi-Fi Name (SSID)	Pruebas
	Wi-Fi Password	\$
		💾 Save

Abbildung 37: Website: Communications.

✓ Auf dem Bildschirm Firmware die Kommunikationsfirmware aktualisieren (Abbildung 38).

Circutor	CVM-E3-MINI-WiEth	
Device Info	Firmware	
Communications	Unorade Communications Firmware Version	
Firmware	Current Communications Firmware Version	1.0.2

🕁 Upgrade

Abbildung 38: Website: Firmware.

9.- TECHNISCHE MERKMALE

Wechselstromversorgung ⁽¹⁷⁾				
CVM-E3-MINI-ITF - CVM-E3-MINI-MC - CVM-E3-MINI-FLEX				
Nennspannung	207 253 V ~ 100 240 V ~ ± 10%			
Frequenz	50 60 Hz	50 60 Hz		
Verbrauch	4 VA	4.9 6.1 VA		
Installationskategorie	CAT III 300 V	CAT III 300 V		
CVM-E3-MINI-ITF-WiEth - C	VM-E3-MINI-MC-WiEth - CVM-E3-	MINI-FLEX-WiEth		
Nennspannung	100 240 V	′~±10%		
Frequenz	50 6	0 Hz		
Verbrauch	4 5.	2 VA		
Installationskategorie	CAT III 3	300 V		
G	ileichstromversorgung ⁽¹⁷⁾			
CVM-E3-MINI-ITF	- CVM-E3-MINI-MC - CVM-E3-MIN	II-FLEX		
Nennspannung	100 240 V	± 10%		
Verbrauch	3 3.	5 W		
Installationskategorie	CAT III 3	300 V		
CVM-E3-MINI-ITF-WiEth - CVM-E3-MINI-MC-WiEth - CVM-E3-MINI-FLEX-WiEth				
Nennspannung	100 240 V ± 10%			
Verbrauch	2.5 2	.8 W		
Installationskategorie	CAT III 300 V			
⁽¹⁷⁾ je nach Modell				
	Spannungsmesskreis			
Nennspannung (Un)	300V F	300V F-N, 520V F-F		
Spannungsmessbereich	5	5120% Un		
Frequenzmessbereich	45	45 65 Hz		
Eingangswiderstand		400 kΩ		
Mindestspannung für Messung (Vstart)	ir Messung (Vstart) 11 V F-N			
Installationskategorie CAT III 300 V		111 300 V		
Strommesskreis				
CVM-E3-MINI-FLEX-xxx	Messung mithilfe	von Rogowski-Sensoren		
	CVM-E3-MINI-ITF-xxx	/5A o/1 A		
Nennstrom (In)	CVM-E3-MINI-MC-xxx	/0.250 A		
	CVM-E3-MINI-FLEX-xxx	2000 A		
	CVM-E3-MINI-ITF-xxx	2 120% In		
Strommessbereich	CVM-E3-MINI-MC-xxx	2 100% In		
	CVM-E3-MINI-FLEX-xxx	2 120% In		
	CVM-E3-MINI-ITF-xxx	0.2% In		
Mindestmessstrom (Istart)	CVM-E3-MINI-MC-xxx	0.2% In		
	CVM-E3-MINI-FLEX-xxx	5 A		
Verbrauch		0.9 VA		
Installationskategorie CAT III 300 V		III 300 V		

Messgenauigkeit				
	CVM-E3-MINI-ITF-xxx			
Spannungsmessung	CVM-E3-MINI-MC-xxx	0.5% ± 1	Stelle	
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾			
	CVM-E3-MINI-ITF-xxx	0.5% ± 1 Stelle		
Strommessung	CVM-E3-MINI-MC-xxx	$0.5\% \pm 1$ Stelle (10% $\le 1 \le 100\%$ ln)		
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾	0.5% ± 1	Stelle	
	CVM-E3-MINI-ITF-xxx			
Frequenzmessung	CVM-E3-MINI-MC-xxx	0.59	6	
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾			
	CVM-E3-MINI-ITF-xxx	0.5% ± 2	Stellen	
Wirkleistungsmessung	CVM-E3-MINI-MC-xxx	1% ± 2 Stellen (I > 3	2%, I ≤ 100% In)	
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾	2% ± 2 Stellen		
	CVM-E3-MINI-ITF-xxx	1% ± 2 Stellen		
Blindleistungsmessung	CVM-E3-MINI-MC-xxx	2% ± 2 Stellen (I ≤ 100% In)		
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾	2% ± 2 Stellen (bei 50 Hz) 3% ± 2 Stellen (bei 60 Hz)		
	CVM-E3-MINI-ITF-xxx	0.5% ± 2 Stellen		
Scheinleistungsmessung	CVM-E3-MINI-MC-xxx	1% ± 2 Stellen (l > 2%, l ≤ 100% ln)		
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾	2% ± 2 Stellen		
		l < 0.1In	l > 0.1In	
	CVM-E3-MINI-ITF-xxx	Klasse 1	Klasse 0.5 (/1 A) Klasse 0.5 s (/5 A)	
Wirkenergiemessung	CVM-E3-MINI-MC-xxx	Klasse 1 (l > 2%	, I ≤ 100% In)	
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾	Klasse 2		
	CVM-E3-MINI-ITF-xxx	Klasse 2		
Messung der Blindenergie	CVM-E3-MINI-MC-xxx	Klasse 2 (l > 2%, l ≤ 100% ln)		
	CVM-E3-MINI-FLEX-xxx ⁽¹⁸⁾ Klasse 3		e 3	

⁽¹⁸⁾ Messgenauigkeit mit Sensoren.

Impulsausgänge (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)			
Anzahl	1		
Art	N	PN-Ausgang	
Maximale Spannung	24V		
Maximaler Strom		50 mA	
Maximale Frequenz	16	Impulse / Sek.	
Impulsbreite	30 ms bis 500 ms (programmierbar)		
Digitaler Eingang (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)			
Anzahl	1		
Art	NPN Potentialfreier Kontakt		
Elektrische Isolierung	optoisoliert		
Kommunikation (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)			
	Modbus RTU BACnet		
Feldbus	RS-485	MS/TP	
Kommunikationsprotokoll	Modbus RTU	BACnet	
Geschwindigkeit	9600 - 19200 - 38400 ⁽¹⁹⁾ - 57600 ⁽¹⁹⁾ - 115200 ⁽¹⁹⁾ bps		

(Fortsetzung) Kommunikation (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)					
Modbus RTU BACnet		BACnet			
Stoppbits		1-2	1		
Parität		keine - gerade - ungerade	keine		
⁽¹⁹⁾ Verfügbar auf Geräten mit Softw	areversior	v2.xx.			
Ethernet-Kommunikation (CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC-WiEth, CVM-E3-MINI-FLEX-WiEth)					
Art		Ethernet 10BaseT - 100BaseTX mit automatischer Erkennung			
Anschluss			RJ45		
Protokoll		Modbus T	Modbus TCP - Web server		
Verbindungsmodus zum Netzwerl	<	DHCP ON/OFF	(standardmäßig ON)		
Wi-Fi-Kommunikation (CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC-WiEth, CVM-E3-MINI-FLEX-WiEth)					
Band		2.4 GHz (Bereich:	2.4 2.5 GHz)		
Standards		IEEE 802.11 b / g, IEEE 802	2.11 n (bis zu 150 Mbps)		
Maximale Ausgangsleistung		IEEE 802.11 t IEEE 802.11 t	o : 20 dBm n : 14 dBm		
Bluetooth®-Kommunikation (CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC-WiEth, CVM-E3-MINI-FLEX-WiEth)			3-MINI-FLEX-WiEth)		
Protokolle		Bluetooth® v4.2 BR/EDR	and BLE specification		
Radius	NZIF receiver with –97 dBm sensitivity Class-1, class-2 and class-3 transmitter Adaptive Frequency Hopping (AFH)		97 dBm sensitivity lass-3 transmitter y Hopping (AFH)		
		Benutzeroberfläche			
Display		Benutzeroberfläche LCD Custom C	OG mit hohem Kontrast		
Display Tastatur		Benutzeroberfläche LCD Custom C	OG mit hohem Kontrast 3 Tasten		
Display Tastatur LED		Benutzeroberfläche LCD Custom C	OG mit hohem Kontrast 3 Tasten 2 LED		
Display Tastatur LED		Benutzeroberfläche LCD Custom C	OG mit hohem Kontrast 3 Tasten 2 LED		
Display Tastatur LED		Benutzeroberfläche LCD Custom C Umgebungseigenschaften CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C		
Display Tastatur LED Arbeitstemperatur		Benutzeroberfläche LCD Custom C LCD Custom C Umgebungseigenschaften CVM-E3-MINI-xxx CVM-E3-MINI-xxx-WiEth	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C		
Display Tastatur LED Arbeitstemperatur		Benutzeroberfläche LCD Custom C LCD Custom C Umgebungseigenschaften CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C		
Display Tastatur LED Arbeitstemperatur Lagertemperatur		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation)		Benutzeroberfläche LCD Custom C LCD Custom C Dumgebungseigenschaften CVM-E3-MINI-xxx CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95%		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx Image: CVM-E3-MINI-xxx <th>COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m</th>	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx IP30, V	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx VM-E3-MINI-xxx IP30, V IP30, V	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 inenbereich		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung		Benutzeroberfläche LCD Custom C LCD Custom C Umgebungseigenschaften CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx IP30, V IP30, V	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 nenbereich		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung		Benutzeroberfläche LCD Custom C LCD Custom C Imgebungseigenschaften CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx Imgebungseigenschaften	20G mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 nenbereich x 118 x 74 mm		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung Abmessungen (Abbildung 39)		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth IP30, V IP30, V CVM-E3-MINI-xxx IP30, V CVM-E3-MINI-xxx IP30, V CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 inenbereich x 118 x 74 mm 300 g.		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung Abmessungen (Abbildung 39)		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx IP30, V IP30, V CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx IP30, V CVM-E3-MINI-xxx	20G mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 nenbereich x 118 x 74 mm 300 g. 275 g.		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung Abmessungen (Abbildung 39) Gewicht		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx CVM-E3-MINI-xxx IP30, N IP30, N CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 nenbereich x 118 x 74 mm 300 g. 275 g. 255 g.		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung Gewicht		Benutzeroberfläche LCD Custom C LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx CVM-E3-MINI-xxx DUTUR CVM-E3-MINI-xxx CVM-E3-MINI-xxx DUTUR CVM-E3-MINI-xxx DUTUR CVM-E3-MINI-xxx DUTUR CVM-E3-MINI-xxx CVM-E3-MINI-XXX CVM-E3-MINI-XXX CVM-E3-MINI-XXX CVM-E3-MINI-XXX CVM-E3-MINI-XXX CVM-E3-MINI-ITF-WiEth CVM-E3-MINI-FLEX-WIEth	20G mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -10°C +80°C 5 95% 2000 m /orderseite: IP40 nenbereich x 118 x 74 mm 300 g. 275 g. 255 g.		
Display Tastatur LED Arbeitstemperatur Lagertemperatur Relative Luftfeuchtigkeit (ohne Kondensation) Maximale Höhe Schutzart Anwendung Abmessungen (Abbildung 39) Gewicht Gehäuse		Benutzeroberfläche LCD Custom C LCD Custom C CVM-E3-MINI-xxx CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx-WiEth CVM-E3-MINI-xxx CVM-E3-MINI-xxx CVM-E3-MINI-xxx D CVM-E3-MINI-xxx CVM-E3-MINI-xxx D CVM-E3-MINI-xxx D CVM-E3-MINI-xxx D CVM-E3-MINI-xxx D CVM-E3-MINI-xxx	COG mit hohem Kontrast 3 Tasten 2 LED -5°C +45°C -10°C +50°C -10°C +50°C -30°C +80°C 5 95% 2000 m /orderseite: IP40 nenbereich x 118 x 74 mm 300 g. 275 g. 255 g. 1 255 g.		

⁽²⁰⁾ Der empfohlene Mindestabstand zwischen den Schienen für die Installation der **CVM-E3-MINI**-Geräte beträgt 150 mm.

Circutor _____

Normen	
Sicherheitsanforderungen an elektrische Geräte zur Messung, Steuerung und Verwendung im Labor. Teil 1: Allgemeine Anforderungen.	EN 61010-1: 2010
Sicherheitsanforderungen an elektrische Geräte zur Messung, Steuerung und Ver- wendung im Labor. Teil 2-030: Besondere Bestimmungen für Prüf- und Messkreise.	EN 61010-2-030: 2010
Elektrische Mess-, Steuer-, Regel- und Laborgeräte. Anforderungen hinsichtlich der elektromagnetischen Verträglichkeit (EMV). Teil 1: Allgemeine Anforderungen. (ratifiziert von AENOR im März 2013.)	EN 61326-1:2013
Elektrische Sicherheit in Niederspannungsnetzen bis AC 1000 V und DC 1500 V. Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen. Teil 12: Kombinierte Geräte zur Messung und Überwachung des Betriebsverhaltens	EN 61557-12:2008
Test for flammability of plastic materials for parts in devices and appliances	UL 94

Abbildung 39: Abmessungen des CVM-E3-MINI.

10.- WARTUNG UND TECHNISCHER KUNDENDIENST

Wenden Sie sich bei Fragen zu der Funktionsweise oder Störungen der Geräte an den Technischen Kundendienst von **CIRCUTOR S.A.U.**

Circutor

Kundendienst

Vial Sant Jordi, s/n , 08232 - Viladecavalls (Barcelona) Tel.: 902 449 459 (Spanien) / +34 937 452 919 (aus dem Ausland) E-Mail: sat@circutor.com

11.- GARANTIE

CIRCUTOR gewährt auf seine Produkte eine Garantie für Fertigungsfehler aller Art von zwei Jahren ab dem Lieferzeitpunkt der Geräte.

CIRCUTOR repariert oder ersetzt alle Produkte mit Fertigungsfehlern, die innerhalb des Garantiezeitraums zurückgegeben werden.

für die Lagerung, Installation oder Wartung erlischt jeglicher Garantieanspruch. Als "unsachgemäße Verwendung" werden Anwendungs- oder Lagerungsbedingungen betrachtet, bei denen die Anforderungen gemäß NEC (National Electrical Code) oder die Spezifikationen im Kapitel über technische und ökologische Merkmale in dieser Anleitung nicht erfüllt werden. • Bei Schäden an den Geräten oder anderen Teilen der Anlage, die durch unsachgemäße

• Bei der Rücksendung ist es unbedingt erforderlich, einen Bericht beizufügen, in dem die festgestellten Mängel oder der Grund der Rücksendung vermerkt werden. Andern-

· Bei unsachgemäßer Verwendung der Geräte oder Nichtbefolgung der Anweisungen

falls wird der Umtausch der betroffenen Geräte bzw. deren Reparatur abgelehnt.

• Bei Schäden an den Geräten oder anderen Teilen der Anlage, die durch unsachgemäße Installation oder Verwendung verursacht werden, übernimmt **CIRCUTOR** keine Verantwortung, sodass etwaige Zahlungsforderungen für resultierende Schäden abgelehnt werden. Demnach gilt diese Garantie nicht für Fehler, die durch folgende Umstände verursacht werden:

- Überspannungen und/oder elektrische Störungen der Stromversorgung

- Kontakt mit Wasser, sofern das Produkt nicht über die entsprechende IP-Schutzart verfügt.

- Mangelnde Belüftung und/oder zu hohe Temperaturen

- Fehlerhafte Installation und/oder mangelnde Wartung.

- Kundenseitige Reparatur oder Änderung des Materials ohne Genehmigung durch den Hersteller.

08232 Viladecavalls (Barcelona) Spain

(+34) 937 452 900 - info@circutor.com

CIRCUTOR, SA - Vial Sant Jordi, s/n

12.- KONFORMITÄTSERKLÁUNG UE

æ responsabilité exclusive de CIRCUTOR dont l'adresse postale est Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelone) 2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive installé, entretenu et utilisé dans l'application pour laquelle il a La présente déclaration de conformité est délivrée sous d'harmonisation pertinente dans l'UE, à condition d'avoir été Il est en conformité avec la(les) suivante (s) norme(s) ou été fabriqué, conformément aux normes d'installation L'objet de la déclaration est conforme à la législation DÉCLARATION UE DE CONFORMITÉ applicables et aux instructions du fabricant analyseurs de réseaux triphasés, rail DIN autre(s) document(s) réglementaire (s): CIRCUTOR 2011/65/UE: RoHS2 Directive CVM-E3-MINI Espagne Marque: Produit: H Série: responsibility of CIRCUTOR with registered address at Vial Sant It is in conformity with the following standard(s) or other 2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive The object of the declaration is in conformity with the relevant manufactured, in accordance with the applicable installation EU harmonisation legislation, provided that it is installed, maintained and used for the application for which it was This declaration of conformity is issued under the sole lordi, s/n – 08232 Viladecavalls (Barcelona) Spain EU DECLARATION OF CONFORMITY standards and the manufacturer's instructions Power analyzer, three-phase DIN rail CIRCUTOR 2011/65/UE: RoHS2 Directive regulatory document(s): CVM-E3-MINI Product: Brand: Series: La presente declaración de conformidad se expide bajo la EL objeto de la declaración es conforme con la legislación de mantenido y usado en la aplicación para la que ha sido fabricado, de acuerdo con las normas de instalación aplicables y las Está en conformidad con la(s) siguiente(s) norma(s) u otro(s) armonización pertinente en la UE, siempre que sea instalado, /ial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) España 2014/30/UE: Electromagnetic Compatibility Directive exclusiva responsabilidad de CIRCUTOR con dirección en DECLARACIÓN UE DE CONFORMIDAD Analizadores de redes trifásicos, carril DIN

CIRCUTOR

Marca:

CVM-E3-MINI

Serie:

Producto:

NBE. A-08513178 Vial Sapt Jordi, s/n. 08232 VN.ADECAVALL5 (Barcelona) Spain

General Manager: Ferran Gil Torné

Viladecavalls (Spain), 08/02/2018

CIRCUTOR, SJ

2018

Année de marquage « CE »:

2018

Year of CE mark:

2018

Año de marcado "CE":

1

IEC 61326-1:2012 Ed 2.0

IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0

IEC 61326-1:2012 Ed 2.0

IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0

IEC 61326-1:2012 Ed 2.0

EC 61557-12:2007 Ed 1.0

documento(s) normativos(s): IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0

2014/35/UE: Low Voltage Directive 2011/65/UE: RoHS2 Directive

instrucciones del fabricante

IEC 61557-12:2007 Ed 1.0

IEC 61557-12:2007 Ed 1.0

S

CIRCUTOR

KONFORMITÄTSERKLÁRUNG UE

Verantwortung von CIRCUTOR mit der Anschrift, Vial Sant Jorliegende Konformitätserklärung wird unter alleiniger 08232 Viladecavalls (Barcelona) Spanien, Jordi, s/n ausgestellt

Dreiphasen-Leistungsanalyser, DIN-Schiene

^produkt:

CVM-E3-MINI Serie:

Marke:

CIRCUTOR

entsprechend gemäß den geltenden Der Gegenstand der Konformitätserklärung ist konform mit der geltenden Gesetzgebung zur Harmonisierung der EU, sofern die nstallation, Wartung undVerwendung der Anwendung seinem nstallationsstandards und der Vorgaben des Herstellers erfolgt. 2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive Verwendungszweck

Es besteht Konformität mit der/den folgenden sonstigem/sonstiger oder Regelwerk/Regelwerken Norm/Normen

IEC 61326-1:2012 Ed 2.0 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61557-12:2007 Ed 1.0

Jahr der CE-Kennzeichnung:

2018

6

Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Espanha A presente declaração de conformidade é expedida sob exclusiva responsabilidade da CIRCUTOR com morada em

Producto:

Analisadores de redes trifásicos, Calha DIN

CVM-E3-MINI Série:

Marca:

0

mantido e utilizado na aplicação para a qual foi fabricado, de acordo com as normas de instalação aplicáveis e as instruções do objeto da declaração está conforme a legislação de harmonização pertinente na UE, sempre que seja instalado, fabricante.

2014/35/UE: Low Voltage Directive 2011/65/UE: RoHS2 Directive Está em conformidade com a(s) seguinte(s) norma(s) ou outro(s) documento(s) normativo(s):

IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61557-12:2007 Ed 1.0

Ano de marcação "CE"::

General Manager: Ferran Gil Torné Viladecavalls (Spain), 08/02/2018

08232 Viladecavalls (Barcelona) Spain CIRCUTOR, SA - Vial Sant Jordi, s/n (+34) 937 452 900 - info@circutor.com

CIRCUTOR, SJA All the second s La presente dichiarazione di conformità viene rilasciata sotto Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcellona) Spagna $\dot{\mathrm{E}}$ conforme alle seguenti normative o altri documenti normativi: IEC 61326-1:2012 Ed 2.0 normativa di armonizzazione dell'Unione Europea, a condizione 2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive dell'applicazione per cui è stato prodotto, secondo le norme di L'oggetto della dichiarazione è conforme alla pertinente che venga installato, mantenuto e utilizzato nell'ambito la responsabilità esclusiva di CIRCUTOR, con sede in installazione applicabili e le istruzioni del produttore DICHIARAZIONE DI CONFORMITÀ UE Analizzatori di reti trifase, binario DIN CIRCUTOR 2018 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 2011/65/UE: RoHS2 Directive IEC 61557-12:2007 Ed 1.0 Anno di marcatura "CE": CVM-E3-MINI MARCHIO: prodotto: E Serie: 2014/30/UE: Electromagnetic Compatibility Directive IEC 61326-1:2012 Ed 2.0 DECLARAÇÃO DA UE DE CONFORMIDADE CIRCUTOR 2018

PL) DEKLARACIA ZGODNOŚCI UE Niniejsza deklaracja zgodności zostaje wydana na wyłączną odpowiedzialność firmy CIRCUTOR z siedzibą pod adresem: Vial

ouppowiedzianiosc inimy circuciorio z siedzioą pod adresem. Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Hiszpania

produk: Trójfazowe analizatory sieci, szyna DIN

Seria:

7	
5	
2	
m	
th:	
E3-	
-E3-	
л-EЗ-	
M-E3-	
/M-E3-	
VM-E3-	
CVM-E3-	
CVM-E3-	

marka:

CIRCUTOR

Przedmiot deklaracji jest zgodny z odnośnymi wymaganiami prawodawstwa harmonizacyjnego w Unii Europejskiej pod warunkiem, że będzie instalowany, konserwowany i użytkowany zgodnie z przeznaczeniem, dla którego został wyprodukowany, zgodnie z mającymi zastosowanie normami dotyczącymi instalacji oraz instrukcjami producenta

2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive

Jest zgodny z następującą(ymi) normą(ami) lub innym(i) dokumentem(ami) normatywnym(i): IEC60101-12010+MD1:2016 CSV Ed 3.0 IEC 61326-1:2012 Ed 2.0 IEC 61557-12:2007 Ed 1.0

Rok oznakowania "CE":

2018

CIRCUTOR, **SA** – Vial Sant Jordi, s/n 08232 Viladecavalls (Barcelona) Spain (+34) 937 452 900 – info@circutor.com

Circutor

Viladecavalls (Spain), 08/02/2018 General Manager: Ferran Gil Torné

ANHANG A .- KONFIGURATIONSMENÜS

Programmierung des alarms

(Modelle CVM-E3-MINI-xxx)

⁽²¹⁾ Verfügbar auf Geräten mit Softwareversion v2.xx.

CIRCUTOR S.A.U. Vial Sant Jordi, s/n 08232 - Viladecavalls (Barcelona) Tel: (+34) 93 745 29 00 - Fax: (+34) 93 745 29 14 www.circutor.com central@circutor.com